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Abstract

Achieving a malaria-free world presents exciting scientific challenges as well as overwhelm-
ing health, equity, and economic benefits. WHO and countries are setting ambitious goals
for reducing the burden and eliminating malaria through the “Global Technical Strategy” and
21 countries are aiming to eliminate malaria by 2020. The commitment to achieve these tar-
gets should be celebrated. However, the need for innovation to achieve these goals, sustain
elimination, and free the world of malaria is greater than ever. Over 180 experts across
multiple disciplines are engaged in the Malaria Eradication Research Agenda (malERA)
Refresh process to address problems that need to be solved. The result is a research and
development agenda to accelerate malaria elimination and, in the longer term, transform the
malaria community’s ability to eradicate it globally.

Summary points

o The first malERA consultative process in 2011 identified a number of targets for invest-
ment and the scientific community has made progress across the research and
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development (R&D) continuum. Progress includes positive scientific opinion for a
malaria vaccine, advanced development of 3 nonpyrethroid insecticides, new genetic
technologies with the potential to alter malaria parasite transmission by the mosquito,
identification of markers of drug resistance, and development of Plasmodium vivax liver
stage assays as well as new collaborative approaches to mathematical modelling and
screening for active ingredients for drugs and insecticides.

Scientific progress, however, has been matched with significant challenges. The expan-
sion of both insecticide and drug resistance threatens progress in affected countries.
Gaps in the knowledge base persist, from epidemiological and entomological tools to
guide programmes, particularly at low transmission levels, understanding the role of
low-density infections in maintaining transmission and developing appropriate diag-
nostics for programmes, biomarkers, and tools to detect and clear hypnozoites, to tools
to tackle residual transmission, receptivity, and prevention of reintroduction.

« In some areas, progress has been too slow, particularly in the creation of a tool kit to
tackle P. vivax malaria, investments in the development of new vector control tools,
almost all aspects of entomology, and in systematically testing solutions in the context
of the respective health and social systems.

Malaria parasites and their infections continually evolve, creating new research and pro-
gramme challenges. In one region, human infections with P. knowlesi are rising, para-
sites with hrp2/3 deletions are evading detection by current rapid diagnostic tests
(RDTs), and current effective vector control tools are selecting for mosquitoes with both
physiologic resistance and behavioural traits like outdoor biting and resting.

The malERA Refresh agenda proposes a broad agenda for transdisciplinary solutions to
the problems faced. It points to 3 areas in which innovation is critical: (i) iterative
improvements in drugs and vector control; (ii) transformative improvements in tools
and strategies to reduce, if not halt, the parasite’s capacity to transmit; and (iii) inte-
grated approaches in which a robust elimination strategy responds to local variations in
transmission dynamics, is tailored to the health and social system context, and draws
strength from other sectors.

Introduction

The 2011 malaria Eradication Research Agenda (malERA) was the first comprehensive analy-
sis of the science needed to support national elimination of malaria and the long-term goal of
its global eradication [1]. The 2011 malERA consultative process engaged a multidisciplinary
group, involving members of the infectious disease and malaria research and implementation
communities, and identified both emerging challenges and approaches to solving them. Five
years later, the review of progress and emerging challenges, as well as a more nuanced under-
standing of the implementation problems that need to be solved, drove the 2016 ‘malERA
Refresh’, with the intent to assess progress and the emergence of new challenges, examine cur-
rent hypotheses, and point to the key research and development areas that can advance the fea-
sibility of malaria elimination in the most challenging areas of the world.

Global goals for a reduction in malaria burden and elimination were published in 2 comple-
mentary documents in 2015: the Global Technical Strategy for Malaria 2016-2030 (GTS) and
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Action and Investment to defeat Malaria 2016-2030 (AIM), a global investment case for
financing and coordinating these efforts [2,3]. Other groups have expressed a vision of global
malaria eradication and underscored the need for R&D investments and country financing
[4]. Building on the goals expressed in the GTS and AIM, the World Health Organization
(WHO) has established a Strategic Advisory Group (SAG) to analyse future scenarios for
malaria, including eradication. WHO SAG has affirmed WHO’s long-standing commitment
to the goal of eradication, although it does not specify an end date for that goal [5,6].

There is not an assumption that 1 single ‘silver bullet’ will solve all of the challenges, but—
as was stated by Tachi Yamada in 2007—’imperfect tools applied imperfectly can still achieve
remarkable impact’, and a toolbox of solutions is needed that countries can draw upon and
adapt to their health and social systems context [7,8]. A strong research base is a keystone for
long-term progress in achieving the goals of the GTS. It is in this context that the malERA
Refresh Panels propose a multidisciplinary research agenda for researchers, programme imple-
menters, and research funders to accelerate problem solving and impact.

Accelerating to elimination

Elimination of malaria means the ‘interruption of local transmission (reduction to zero inci-
dence of indigenous cases) of a specified malaria parasite in a defined geographical area as a
result of deliberate activities. Continued measures to prevent re-establishment of transmission
are required’ (see Glossary, Table 1). A number of countries have been able or are on their way
to eliminating malaria by applying a combination of vector control, efficient case manage-
ment, and active surveillance strategies, all with existing tools for prevention, diagnosis, and
treatment. Between 2000 and 2015, 17 countries eliminated malaria [9]. A further 21 countries
have been identified as having the potential to eliminate malaria by 2020, comprising the “E-
2020 (Fig 1) [10,11]. There are key elements to the elimination strategy, reflected in high
uptake of core interventions by programmes and communities: a robust surveillance, report-
ing, and response system; prevention with a variety of ways to deliver insecticides and barrier
methods to stop infectious bites; and diagnosis and treatment with effective combination med-
ications. For this reason, WHO now frames national elimination as a continuum rather than
the achievement of milestones for specific phases [6]. The heterogeneous nature of malaria
across geographies means that a single approach will not work in all settings with the same effi-
ciency. According to the ‘Acceleration Hypothesis’, countries with high vectorial capacity, par-
ticularly in sub-Saharan Africa, may require measures to rapidly deplete the parasite
population [6,12], after which, locally tailored vector control, case management, and surveil-
lance strategies with active methods to investigate and clear infections can then more effec-
tively reduce transmission [12]. Whilst currently being considered and tested, strategies to
accelerate elimination (such as mass drug administration [MDA] with antimalarials, low dose
primaquine, complementary tools to address residual transmission, etc.) have not yet, and
may not be, proven to be widely effective in moving settings with high residual transmission
towards sustainable elimination. Ongoing research testing these tools and strategies is curated
in the open MESA Track database [13]. Across the malaria endemic world, there exist chal-
lenges, and it is here that innovation is required to achieve elimination and quicken its course.
Those challenges include areas of high receptivity (where the ecosystems are favourable for
malaria transmission), highly competent vectors, residual transmission, resistance to drugs
and/or insecticides, and areas where there are human populations that are not adequately
served by the health system.

Some key points emerge from experiences in elimination countries and are worth clarify-
ing, because they frame the context for evaluation of new tools to accelerate progress. First,
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Table 1. Glossary of terms. The meaning of the terms used in the malERA Refresh series are described here. The sources of the definitions are referenced;
where no reference is cited, the authors of this paper provided the definition.

Term

Asymptomatic parasitaemia
CHMI, also called human blood-stage

challenge model

CRISPR

Dormancy

Efficacy

Effectiveness

Elimination (of malaria)

Eradication (of malaria)

Operational research

Persistence

Receptivity

Recrudescence

Reinfection

Relapse

Residual transmission

SERCaP

Malaria stratification

Definition
The presence of asexual parasites in the blood without symptoms of iliness.

An established malaria infection model in which a group of healthy volunteers are inoculated with
Plasmodium sporozoites via the bite of laboratory-reared infected female Anopheline mosquitoes or
via needle and syringe, followed by complete medical cure. Volunteers are closely monitored for
safety and clinical trial end points. CHMI allows the assessment of malaria vaccines, drugs,
diagnostics, and the study of immunological mechanisms.

Gene-editing technology allowing for highly specific DNA modification. The technique is based on a
bacterially derived endonuclease, such as Cas9, which can cut DNA in any desired location given a
synthetic RNA guide sequence, the CRISPR. A new DNA sequence can then be introduced in that
position by DNA repair machinery.

Any state of suppressed development (developmental arrest) that is adaptive (that is, ecologically or
evolutionarily meaningful and not just artificially induced) and usually accompanied by metabolic
suppression (can apply to the parasite or vector).

A measure of the beneficial effect of an intervention in a controlled setting, for example, a
randomised controlled trial.

A measure of to what extent the efficacy of an intervention can be retained at the individual (clinical)
or the community (systems) level.

Interruption of local transmission (reduction to zero incidence of indigenous cases) of a specified
malaria parasite in a defined geographical area as a result of deliberate activities. Continued
measures to prevent reestablishment of transmission are required. Note that the certification of
malaria elimination in a country will require that local transmission is interrupted for all human
malaria parasites.

Permanent reduction to zero of the worldwide incidence of infection caused by human malaria
parasites as a result of deliberate activities. Interventions are no longer required once eradication
has been achieved.

Any research producing practically usable knowledge (evidence, findings, information, etc.) that can
improve programme implementation regardless of the type of research (design, methodology,
approach).

The continued presence of malaria parasites (in humans or mosquitoes) for an extended period,
generally after initial intervention has concluded.

Receptivity of an ecosystem to transmission of malaria. Note that a receptive ecosystem should
have, e.g., the presence of competent vectors, a suitable climate, and a susceptible population.

Recurrence of asexual parasitaemia of the same genotype(s) that caused the original iliness, due to
incomplete clearance of asexual parasites after antimalarial treatment. Note that recrudescence is
different than reinfection with a parasite of the same or different genotype(s) and relapse in P. vivax
and P. ovale infections.

A new infection that follows a primary infection; it can be distinguished from recrudescence by the
parasite genotype, which is often (but not always) different than the genotype that caused the initial
infection.

Recurrence of asexual parasitaemia in P. vivax or P. ovale infections arising from hypnozoites. Note
that relapse occurs when the blood-stage infection has been eliminated but hypnozoites persist in
the liver and mature to form hepatic schizonts. After an interval, generally from 3 weeks to 1 year,
the hepatic schizonts rupture and liberate merozoites into the bloodstream.

Persistence of transmission after good coverage has been achieved with high-quality vector control
interventions, to which local vectors are fully susceptible. Note that both human and vector
behaviour is responsible for such residual transmission, such as people staying outdoors at night or
local mosquito vector species displaying behaviour that allows them to avoid core interventions.

A description of an ideal antimalarial drug therapy, which, in a single-patient encounter, both
eliminates all parasites in the patient and provides individual protection from reinfection for at least 1
month after treatment.

Classification of geographical areas or localities according to epidemiological, ecological, social, and
economic determinants for the purpose of guiding malaria interventions.

Reference
[14]
[15-17]

(18]

[19]

[14]

[14]

[20]

[14]

[14]

[14]

[14]

[14]

[21]

[14]

(Continued)
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Table 1. (Continued)

Term Definition Reference
Subpatent infection Low-density blood-stage malaria infection that is not detected by standard diagnostic tools.
Submicroscopic infection Low-density blood-stage malaria infection that is not detected by conventional microscopy. [14]
Surveillance Continuous, systematic collection, analysis, and interpretation of disease-specific data and use in [14]

planning, implementing, and evaluating public health practice. Note that surveillance can be done at
different levels of the healthcare system (e.g., health facilities, the community) with different
detection systems (e.g., case-based: active or passive) and sampling strategies (e.g., sentinel sites,
surveys).

Vector competence For malaria, the ability of the mosquito to support completion of malaria parasite development after [14]
zygote formation and oocyst formation and development and release of sporozoites that migrate to
salivary glands, allowing transmission of viable sporozoites when the infective female mosquito
feeds again. Note that human malarias are transmitted exclusively by competent species of
Anopheles mosquitoes; various plasmodia are transmitted by competent species of mosquitoes of
the genera Aedes, Anopheles, and Culex and other haematophagous Diptera.

VIMT Vaccines that target the sexual- and mosquito-stage antigens, pre-erythrocytic vaccines that reduce [22]
asexual- and sexual-stage parasite prevalence rates, asexual erythrocytic-stage vaccines that
inhibit multiplication of asexual stage parasites, or vaccines that target vector antigens to disrupt
parasitic development in the mosquito.

Vulnerability The frequency of influx of infected individuals or groups and/or infective anopheline mosquitoes. [14]
Note that vulnerability is also referred to as ‘importation risk’. The term can also be applied to the
introduction of drug resistance in a specific area.

Abbreviations: CHMI, controlled human malaria infection; CRISPR, clustered regularly interspaced short palindromic repeats; malERA, Malaria
Eradication Research Agenda; SERCaP, Single-Encounter Radical Cure and Prophylaxis; VIMT, vaccines that interrupt malaria parasite transmission.

https://doi.org/10.1371/journal.pmed.1002456.t001

elimination has been progressing using current tools and strategies; second, transmission
intensity varies widely between and within countries with different mosquitoes and parasite
species as well as different health systems and a myriad of varying challenges to the scale-up of
interventions; in addition, programmatic goals evolve as transmission changes (Fig 2). The
reduction of transmission may progress in a highly variable fashion, affected by ecologic (e.g.,
climate and outbreaks), biologic (e.g., vector or parasite resistance), and operational (e.g.,
health delivery system, sociopolitical and -economic status) challenges. Moreover, while some
countries have shown durable elimination [23], other countries have come close to but not
achieved elimination and then experienced resurgences [24]. New approaches are needed to
address vulnerability and receptivity so that elimination can be achieved and sustained in spite
of predictable risk of importations.

malERA Refresh process

The malERA Refresh was undertaken against the background of WHO GTS that was unani-
mously adopted by the World Health Assembly in 2015 as well as the Roll Back Malaria

(RBM) AIM framework [2,3]. Although focussed on malaria, the malERA process itself can be
a useful model for defining the research needs, strategies, and portfolios to eliminate and eradi-
cate neglected tropical diseases (NTDs).

The malERA Refresh process was overseen by a leadership group composed of Regina Rabi-
novich (chair, ISGlobal Barcelona Institute for Global Health and Harvard T.H. Chan School
of Public Health), Pedro Alonso (WHO Global Malaria Programme), Marcel Tanner (Swiss
TPH), and Dyann Wirth (Harvard T.H. Chan School of Public Health), and each consultative
panel was led by a chair and 1 or 2 cochairs [25]. The process was managed by the MESA Sec-
retariat (ISGlobal Barcelona Institute for Global Health). Diverse expert panels of scientists,
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. Ongoing malaria transmission

® 21 countries with the potential to eliminate malaria by 2020

@ Countries certified as malaria-free since 2007

Fig 1. Map of 21 countries with the potential to eliminate malaria by 2020. There are 91 countries and territories with ongoing malaria
transmission [9]. An analysis by WHO has identified 21 countries with the potential to eliminate by 2020: Algeria, Belize, Bhutan, Botswana, Cabo
Verde, China, Comoros, Costa Rica, Ecuador, El Salvador, Iran (Islamic Republic of), Malaysia, Mexico, Nepal, Paraguay, Republic of Korea,
Saudi Arabia, South Africa, Suriname, Swaziland, and Timor-Leste [10]. Countries and territories that have been certified malaria-free since 2007
are the United Arab Emirates (2007), Morocco (2010), Turkmenistan (2010), Armenia (2011), Maldives (2015), Sri Lanka (2016), and Kyrgyzstan
(2016) [9,10]. Argentina and Paraguay have formally requested certification of malaria elimination and are in the process. Note that not all countries
that have achieved zero indigenous cases for 3 consecutive years have sought certification from WHO. Map base vector created by Freepik.

https://doi.org/10.1371/journal.pmed.1002456.9001

programme managers, and decision makers were convened for 6 thematic areas. The themes
of the panels were adapted from the original malERA, reflecting the evolution of the knowl-
edge base even since the first malERA process in 2011. One panel examined tools for elimina-
tion (vector control, vaccines, diagnostics, and drugs), one panel tackled the application of
mathematical modelling to the challenges of combining interventions, and the health systems
panel also addressed policy research. New panels were created, one to look at the infectious
reservoir and one focussed on resistance to antimalarial drugs and insecticides (for the full list
of panels, see Table 2). A systematic literature search was performed for each theme to identify
papers published between 2010 and 2016. These papers were supplemented with suggestions
from panelists and projects in the MESA Track database of active projects. Each panel had 1
in-person meeting to assess the progress since malERA 2011 and discussed whether there had
been adequate efforts to address each area. Taking into consideration the major advances that
have taken place since the first malERA consultations, the panels highlighted specific chal-
lenges and indicated key opportunities to generate knowledge, tools, and strategies for malaria

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002456 November 30, 2017 6/17
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ENABLING ENVIRONMENT

TRANSMISSION INTENSITY

ACCELERATED PATH

Reduce Reduce Address Achieve, document and sustain
burden transmission transmission foci zero transmission

PROGRAMMATIC AIMS

\ \ \ SCIENTIFIC UNDERPINNING J 1 j

Fig 2. Research accelerates progress towards malaria elimination goals. Research and development responds to the diverse and
evolving needs of malaria programmes to underpin elimination and eradication. ‘Scientific underpinning’: research agenda is
multidisciplinary and includes all human Plasmodium species. Quality evidence informs policies and decision makers. ‘Accelerated
path’: technical and operational innovations accelerate progress towards malaria elimination. ‘Enabling environment’: working
partnerships between malaria programmes and research institutions. The malaria community and the research community respond
effectively to opportunities afforded by other sectors, e.g., urbanisation, education. The malaria community and the research community
respond effectively to threats, e.g., natural disasters, conflict, stimulation of career progression and scientific leadership from malaria
endemic countries, and commitment to national malaria elimination goals by Ministries of Health, Finance, Science, Education, and
Tourism.

https://doi.org/10.1371/journal.pmed.1002456.9002

elimination (Box 1). Cross-links between the panels were ensured by cross-panel participation
and an online consultation of main findings (Fig 3).

A final meeting of all panel leaders reviewed results of this process and identified cross-cut-
ting themes that arose across several panels. These are described further in this paper: surveil-
lance, implementation science, and transmission and persistence. In addition, 2 areas—
entomology and P. vivax malaria—were recognised as research areas that were consistently
failing to garner adequate resources and thus scientific engagement. Rather than define spe-
cific areas for prioritisation, this research agenda lays out the rationale, context, and relevance
for a range of interlinked areas.

Cross-cutting priority research areas

Surveillance and towards surveillance-response approaches. Malaria programmes
continuously need data to direct their actions and resources, to gauge their impact, and,

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002456 November 30, 2017 7/17
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Table 2. Using the themes from the first malERA process as a starting point, malERA Refresh was
organised by research themes that are relevant for malaria elimination and eradication and reflect cur-
rent hypotheses and new thinking.

malERA 2011

¢ Introductory paper

* Basic science and enabling
technologies

* Drugs

* Vaccines

* Vector control

* Diagnosis and diagnostics
* Monitoring, evaluation, and
surveillance

* Modelling

» Cross-cutting issues for
eradication

¢ Lessons for the future

* Role of research in viral
disease eradication

malERA Refresh 2017

* Overview and synthesis paper
* Basic science and enabling technologies

* Basic science and enabling technologies remained a key theme.
* Insecticide and drug resistance

* Given the evolving threat and search for solutions to resistance, a
panel was created to address resistance to insecticides and antimalaria
drugs in the malaria elimination context.
* Characterising the reservoir and measuring transmission

* To reflect the evolving and nuanced questions around
transmission, 1 panel examined the complexity of the parasite reservoir
and the challenges of measuring transmission.
* Diagnostics, drugs, vaccines, and vector control

* A synthetic assessment of product development for malaria was
included.
* Combination interventions and modelling

* A panel was created to tackle the power of combining tools and
predicting and increasing their impact using mathematical modelling.
* Health systems and policy research

* A panel was dedicated to the operational challenges of malaria
elimination in the context of existing health and social systems.

Abbreviation: malERA, Malaria Eradication Research Agenda.

https://doi.org/10.1371/journal.pmed.1002456.t002

particularly in the elimination context, to reorient their tools and strategies to clear infections
and stop transmission. The recent Ebola and Zika emergencies have highlighted the critical

role of strong health systems with diligent surveillance to enable rapid responses. Surveillance

is considered so fundamental to the malaria programme across the transmission spectrum that
it represents 1 of the 3 pillars of the GTS [2]. Surveillance itself is an intervention and must be

adapted to the respective epidemiological, health, and social system settings [12,26]. Informa-

tion gleaned from surveillance also informs the rational incorporation of new interventions. In

the context of elimination, however, surveillance must be both systematic and sufficiently

robust to capture the diminishing number of cases of disease. As elimination nears, surveil-

lance systems must be capable of correctly assessing the infection burden and direct actions;

for example, if surveillance data show very few cases, then the programme action can pivot to a

reactive approach to treatment around the index patient. Post elimination, surveillance sys-

tems must be capable of identifying cases that are reintroduced to prevent resumption of local

transmission.

Surveillance platforms like the District Health Information Software 2 (DHIS 2) are being
used to collect facility and community data across diseases. When fully functional, such plat-
forms collect dynamic quality-assured information that can be analysed to track temporal and
spatial changes in transmission [26,27]. High-quality information systems that collect real-

time data from incoming cases can spot early warning signals of drug resistance, reintroduc-

tion, and resurgence. High-resolution platforms based on geographic information systems
have been developed that collect, integrate, and share relevant data with various audiences

[27]. These surveillance-response systems are particularly useful for the detection of and
response to unevenly distributed transmission foci with sufficient detail as to depict the single-
household or hamlet level and are key to targeting the operational response. In addition to col-

lecting information on malaria infections, a quality malaria surveillance system should assess

drug efficacy against the parasites and assess mosquito vector populations and insecticide

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002456 November 30, 2017 8/17
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Box 1. Examples of challenges and opportunities to generate
knowledge, tools, and strategies for malaria elimination

See the papers in this series for the full description of where science has and has not
made progress since malERA and the considerations of the main challenges and exciting
opportunities going forward.

Biology

o There are significant gaps in the knowledge base and ability to tackle the non-falcipa-
rum Plasmodium species (P. vivax, P. ovale, P. malariae, P. knowlesi).

o Applying new technologies including CRISPR-Cas9 mediated gene drives, high-
throughput screening, metabolomics, and proteomics will help advance malaria
biology.

Tools and deployment strategies

« Strategies to stop the expanding resistance to pyrethroids, artemisinins, and partner
drugs are urgently needed.

« Tools to detect hypnozoites and P. vivax vaccine candidates remain to be developed.
« Deploying insecticides with novel modes of action.

» Two areas of promise for drug development are applying the controlled human
malaria infection (CHMI) models as a bridge to field efficacy of transmission-blocking
activity and high-throughput phenotypic screening for the ‘neglected’ product profiles,
including hypnozoites and gametocytes.

« Novel approaches to vector control tools are beginning to be explored, including using
drugs for vector control.

« Opportunities are emerging regarding monoclonal antibodies for passive immunity.

Understanding transmission and tackling residual transmission

» Major questions in understanding transmission remain, from gametocyte biology to
characterising and detecting the infectious reservoir.

« Advances are needed in entomological sampling, analysis, and entomological surveil-
lance systems.

« Innovation in genomics, serology, and geospatial tools can help sampling, validating
the absence of malaria transmission, and measuring receptivity.

Malaria programmes and systems

« Questions remain around the best composition, phasing, and threshold triggers for
intervention packages in different settings and as programmes advance along the elim-
ination continuum.
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o An area of promise for malaria programmes is testing and validating essential, collect-
able, and actionable data for programmatic decision-making.

o Advances in molecular technologies will help surveillance of resistance to insecticides

and drugs.

« Strategies for deploying future tools in the field need to be tested and modelling can
guide testing.

« Opportunities using systems-thinking approaches to identify where in the health sys-
tem effectiveness of interventions is lost and can be recovered.

resistance phenotypes [27,28]. The metrics to best provide this information are still under
evaluation.

Research is needed on 2 levels: to better understand low and zero transmission and to
develop measures that can be used by programmes. As countries approach elimination, vali-
dated epidemiological and entomological markers and efficient sampling strategies will be
required to detect transmission at low levels and to confirm the absence of transmission—i.e.,
the challenge of “measuring zero”. Molecular and serological approaches are being evaluated.
For example, identifying and responding to transmission foci would benefit from rapid and
noninvasive diagnostic tools that can be applied in nonclinical settings [27]. The balance
between predictive value and clinical or public health utility of diagnostic testing will differ in
different epidemiologic settings, e.g., as incidence declines, more test-positive cases will be
false positives. There are open questions regarding the programmatic impact of new tools to
identify subpatent infections that might sustain malaria parasite transmission in some settings
[27,29]. The critical balance is that the data collected need to be informative for the pro-
gramme but also practical in terms of collection and interpretation. The concept of “minimal
essential data” describes the balance between a collectable dataset and an informative one,
such that programmes can respond to the data [26,28]. As a malaria programme progresses
towards elimination, the data requirements will be continually changing and what is deemed
“essential” data will also change. There is a need to build an evidence base for effective pro-
grammatic responses, e.g., analysis of the systems for data collection, analysis and response to
minimise effectiveness decay, developing a portfolio of effective programmatic responses to
surveillance data [26], and using modelling and operational research to test specific questions
that could facilitate programme performance [12].

Implementation science. In contrast to the apparent simplicity of programmes that
depend on a single intervention (e.g., vaccines), malaria programmes use a diverse set of tools
in an integrated approach to prevent, detect, and treat infections. While the key elements (sur-
veillance, diagnosis, treatment, and prevention) are constant, there are important nuances and
evolution for each element as transmission declines. As new tools become available, they need
to be integrated into the existing intervention package(s). A critical challenge in malaria elimi-
nation is finding the optimal combination of interventions to maximise impact and mitigate
the risk of resistance and to modify this package in a timely fashion to respond to the increas-
ingly focal and rapidly changing transmission environment. Interventions have to be intro-
duced, altered, replaced, or possibly withdrawn through adaptive strategies responding to
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shifting transmission, emerging resistance, and response to unique community issues and
needs.

Achieving universal coverage of preventive and curative interventions ‘is one of the biggest
opportunities to have a major impact on global mortality and morbidity’ and is also on the
critical pathway to elimination [30]. The programmes currently testing MDA approaches are
providing evidence of the relevance of community engagement and the need for high uptake
of interventions. Health systems and community engagement are both recognised as critical
elements in achieving high coverage, but research to define the successful operational criteria
is still needed; social science methods have not been fully applied to overcome these challenges
[26].

The efficacy of individual interventions is determined through a rigorous set of well-pow-
ered comparative trials to answer very specific questions that quantify the potential for impact
under controlled circumstances. Under these ideal conditions of very high coverage and ade-
quate use, the efficacy of an intervention equals its effectiveness. Under real field conditions,
measurable ‘effectiveness decay’ results from the impact of key elements of the health system,
including challenges in financing, procurement, work force, supply chain, and adherence.
However, the drivers of effectiveness decay vary and depend on the setting, i.e., unique cultural
and/or health systems [26]. malERA 2011 underlined the need to establish a tool for analysing
effectiveness decay within a health system, akin to a diagnostic tool for the system itself. It
would allow the malaria programme to identify bottlenecks, test different approaches to
overcome them, and thus minimise effectiveness decay [31]. Unfortunately, so far, too little
investment and progress have been seen in this area and work to understand and mitigate
effectiveness decay remains a priority [26].

Transmission and persistence. In elimination settings, the malaria programme takes on
an added focus: understanding the nuances that contribute to continued transmission in sce-
narios of low parasitaemia and low incidence and to the parasite’s persistence in host and vec-
tor. malERA 2011 stressed the importance of the infection and the transmission reservoir and
catalysed a search for tools to identify and interrupt transmission [1,21,22,32,33]. Notably, the
concept of a drug combination Single Encounter Radical Cure and Prophylaxis (SERCaP) was
developed [21] (see Glossary in Table 1). Today, new chemical entities with a ‘single encoun-
ter, radical cure’ profile are undergoing early clinical development. The concept of SERCaP
was that it could eliminate all parasites from the human (including the long-lived hypnozoites)
in a single encounter suitable for mass administration (including administration to healthy
people and the consequent need of a very good safety profile) and prophylaxis for at least 1
month after treatment, to outlast the typical development period of plasmodia parasites in
anopheline mosquitoes. Today, new chemical entities with a ‘single encounter, radical cure’
profile are undergoing early clinical development [29]. malERA 2011 expanded the concept of
transmission-blocking vaccines to the broader array of VIMT targets (vaccines that interrupt
malaria parasite transmission), which can be achieved at several stages of the parasite life cycle,
not just the sexual or mosquito stages, as in classical transmission-blocking vaccines [22]. Sev-
eral VIMT candidates for P. falciparum are in the development pipeline. Although P. vivax is
now included in the Malaria Vaccine Technology Roadmap strategic goals, VIMTs for P. vivax
have not advanced [29].

Research to characterise the transmission reservoir has evolved to a focus on the role of
low-density infections undetected by microscopy or current RDT in transmission [27]. Under-
standing determinants of the risk of infectiousness, understanding at what level of parasitae-
mia these are important for sustained transmission, and devising metrics and tools to measure
and target transmission are proposed as key needs [26,27,29,34]. Recently, a highly sensitive
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RDT has been launched and demonstration studies are being planned to test how and when to
use this new tool [35].

Measuring zero transmission is a requisite for programmes that seek to eliminate malaria
and for evaluating tools in the development pipeline that aim to interrupt or reduce transmis-
sion. Validated, measurable epidemiological and entomological indicators of transmission are
needed. The papers in this series discuss the research agenda and potential solutions [12,26—
29,34].

Transmission needs to be reliably measured both at the mosquito and human levels, but the
tools available today only provide proxies for true transmission. Currently, vector control tools
are not able to interrupt all malaria transmission, and ‘residual transmission’ can persist even
in areas with good vector control coverage (see Glossary in Table 1). Residual transmission is
now recognised as a target for investigation and intervention, but there is no consensus yet on
how to quantify this concept. Novel tools to interrupt residual transmission as a complement
to traditional vector control are under development and include toxic sugar-baited traps,
endectocides, and targeted larviciding [27,29].

Gametocyes are the transmissible form of the parasite from humans and present a biologi-
cal opportunity because they are relatively few in number compared to other parasite stages.
Drug candidates with gametocytocidal properties are early in the pipeline and will need to be
tested for their ability to arrest the transmission cycle, and the search for tractable vaccine tar-
gets that attack gametocytes in the human host needs to continue [29,34]. Knowledge of the
drivers controlling gametocyte production is poor, e.g., understanding what environmental
conditions might favour an increased production of gametocytes and facilitate transmission
[27]. Moreover, there is a need to better define the relationship between gametocyte densities
and transmission for both P. falciparum and P. vivax. Reliable biomarkers for both gameto-
cytes and hypnozoites would enable this.

The key determinants for persistence and recrudescence remain to be established. In highly
seasonal settings, it has been demonstrated that humans can act as the parasite reservoir by
carrying gametocytes at levels beneath detection of current diagnostics, but the role of the
mosquito as a reservoir during those months is still poorly understood [27,34].

Major neglected areas critical to elimination

Entomology. Despite the indisputable merit of vector control tools in the reductions of
malaria morbidity and mortality and increasing vector resistance against insecticides, invest-
ment in this area has lagged [36]. This scenario extends from basic research through product
development and training.

Currently, collecting entomological data is laborious and trained entomologists and staff
are scarce. Programmes such as TDR and the US President’s Malaria Initiative have recognised
the need for improving national capacities for entomological monitoring and support training
efforts in some countries [37,38]. The recently adopted *Global Vector Control Response’
report marks a significant commitment of WHO and member states to strengthen vector con-
trol within a collaborative framework [39]. Recent global outbreaks of other vector-borne dis-
eases such as Zika and chikungunya highlight the need for countries to garner the necessary
support for strengthening capacity in entomology and vector control that is also relevant for
malaria. malERA Refresh panelists agreed that medical entomology must have a central role in
the global health curriculum and in the training curriculum for Ministry of Health staff.

The efficacy of available vector control tools is diminished by residual transmission and the
enormous behavioural plasticity and biological variability of malaria vectors and is threatened
by the capacity of the mosquito to develop resistance in the face of high pressure from
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interventions. The papers in this malERA Refresh series offer potential solutions to be devel-
oped and tested [27-29,34].

Novel entomological markers for transmission are needed because the traditional measure
—entomological inoculation rate (EIR)—is not a practical or easily reproducible metric in
lower-transmission settings [27]. The gap in data collection capacities needs to be addressed
by testing and validating what constitute minimal essential, collectable, and actionable data.
New technologies are needed to generate robust data on species distribution, temporal and
spatial biting patterns, and spread of insecticide resistance, which would be actionable data
from entomologic surveillance in the future [27,29].

Vivax malaria (and 3 other species). Five species of Plasmodium infect humans. P. falcip-
arum has been a global priority due to its role as a driver of mortality and severe disease. How-
ever, P. vivax is geographically the most widely distributed form of human malaria, causes 13.8
million cases every year, and is associated with both significant morbidity and a risk for mor-
tality [9]. The research agenda presented in the malERA Refresh series is relevant to P. falcipa-
rum and P. vivax; specific challenges posed by P. vivax are highlighted in the thematic papers
and here.

There are important differences in the biology of P. vivax, particularly its ability to remain
quiescent in the liver, different kinetics and appearance of infectious gametocytes, and signifi-
cant differences in its clinical presentation and risk of recurrence. Unique drugs, diagnostics,
and different targets for vaccine development and strategies are required beyond what is avail-
able today.

malERA 2011 acknowledged hypnozoites as a challenge to P. vivax elimination, and this
remains the case, with a lack of diagnostics to identify carriers and safe efficacious treatments
to clear them [1,29]. Proteomic and metabolomic techniques have been suggested as possible
research tools to detect hypnozoites; additional in vitro studies are needed to expand current
knowledge of their biology and metabolism [34].

Countries with P. falciparum and P. vivax malaria seek to eliminate the disease entirely
rather than a single species. Thus, tackling P. vivax was considered critical in malERA 2011
and, while the biological and epidemiological knowledge base has significantly improved,
there is still a relatively weak pipeline of drugs and vaccines [1,27,29,34].

Tafenoquine is in late-stage development. It is a candidate drug that results in radical cure of
all circulating parasites and P. vivax hypnozoites in a single treatment and confers prophylaxis
for several weeks posttreatment. Results from a Phase III clinical trial show that single-dose tafe-
noquine reduces risk of relapse in patients with P. vivax malaria [29,40]. When tafenoquine
becomes available, it will not remove the need to test for glucose-6-phosphate dehydrogenase
(G6PD) deficiency, which affects 350 million people at risk for malaria and remains a consider-
able obstacle to effective treatment [41]. Novel point-of-care diagnostic tests for G6PD defi-
ciency are currently in late-stage development [29]. In the future, newly developed humanised
mouse models could help predict the haemolytic potential of drugs in the pipeline [29,34].

P. knowlesi poses unique challenges among the 5 malaria species, owing to its zoonotic
transmission. WHO convened an Evidence Review Group (ERG) to review existing data on P.
knowlesi, including an upward trend in incidence documented in Malaysia, and identify
knowledge gaps. The ERG articulated the need for evidence to better understand the likelihood
of human to human transmission [11].

Looking forward

Innovation and problem solving tailored to the local setting are critical to the long-term suc-
cess of the global malaria programme. Three types of innovation need to be pursued: iterative,
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breakthrough, and integrated. malERA Refresh is replete with examples: drugs to overcome
resistance, gene drive as a transformative technology, and the acceleration hypothesis as a test-
able approach to elimination and its interaction with the health system in highly endemic
countries. To pursue the opportunities proposed here for accelerating elimination, a diverse
landscape of funders is needed to prioritise research objectives according to their strategic
plans and stakeholders’ needs. A diligent monitoring of the uptake of the research questions in
this agenda and the impact of the evolving evidence base will be essential to keep the malaria
community on course.
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Abstract

Basic science holds enormous power for revealing the biological mechanisms of disease and,
in turn, paving the way toward new, effective interventions. Recognizing this power, the 2011
Research Agenda for Malaria Eradication included key priorities in fundamental research that,
if attained, could help accelerate progress toward disease elimination and eradication. The
Malaria Eradication Research Agenda (malERA) Consultative Panel on Basic Science and
Enabling Technologies reviewed the progress, continuing challenges, and major opportunities
for future research. The recommendations come from a literature of published and unpub-
lished materials and the deliberations of the malERA Refresh Consultative Panel. These
areas span multiple aspects of the Plasmodium life cycle in both the human host and the
Anopheles vector and include critical, unanswered questions about parasite transmission,
human infection in the liver, asexual-stage biology, and malaria persistence. We believe an
integrated approach encompassing human immunology, parasitology, and entomology, and
harnessing new and emerging biomedical technologies offers the best path toward address-
ing these questions and, ultimately, lowering the worldwide burden of malaria.

Summary points

o The recent development of multiple in vitro systems for studying malaria biology has
helped deepen our understanding of the disease. Nevertheless, research remains ham-
pered by a lack of in vitro models that can probe key aspects of malaria (e.g., gametocyte
development in Plasmodium vivax, fertilization, ookinete biology, parasite-midgut
interactions, human hepatocyte infection) and generate biological materials (i.e., infec-
tious sporozoites) for laboratory study. Developing the necessary cell lines and other in
vitro culture tools to propel these studies represent important areas for future research.

« With the emergence of widespread insecticide resistance in mosquito populations, there
is a strong need to bring basic research in mosquito biology back into the malaria
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eradication agenda to strengthen current insecticide-based control campaigns and gen-
erate alternate vector control strategies.

Driven by the development and accessibility of large-scale research tools and technolo-
gies, the scientific community can systematically tackle key questions in malaria, such as
the following. What are the genes that contribute to antimalarial drug resistance
(thereby defining the full parasite “resistome”)? What are the functions of key Plasmo-
dium genes (providing much-needed annotation of key Plasmodium genes)? What are
the genes and gene mutations that drive resistance in mosquito populations?

Continued exploration of the potential of enabling technologies is needed. Important
areas of future research include the use of gene-drive strategies and other gene-manipu-

lation technologies; metabolomics-based approaches for biomarker discovery; structural
vaccinology, novel technology platforms, and the use of novel adjuvants to improve vac-
cine design; and high-throughput approaches to facilitate drug discovery and screening.

Background

Since the first agenda for malaria eradication was published in 2011 [1], there have been many
significant developments in basic science, including an enhanced understanding of parasite
biology (both gametocyte and liver stages) as well as mosquito biology (Table 1). Some of these
advances could not have been predicted 5 years ago, such as the use of mouse models engrafted
with human liver to advance the biology of liver-stage parasites (including the quiescent P.
vivax hypnozoite stage) and the development of powerful genome-editing capabilities based
on clustered regularly interspaced short palindromic repeats/associated protein-9 nuclease
(CRISPR/Cas9) technology. In contrast, little progress has been achieved in several key
research areas that were previously prioritized and, as such, they remain important stumbling
blocks on the road to eradication.

We focus here on these and other crucial areas—deficiencies in basic science research and
the lack of enabling technologies—that currently limit our progress towards malaria elimina-
tion and eradication. Importantly, this analysis highlights specific aspects of the Plasmodium
life cycle in both the human host and the Anopheles vector. Our integrated approach aims to
combine research efforts and expertise across human immunology, parasitology, and entomol-
ogy to introduce powerful new ideas and technologies from other fields, provide a multifaceted
view of disease biology, and accelerate progress toward eradication.

Methods

The findings presented in this paper result from an extensive literature review of published
and unpublished materials and the deliberations of the 2015 Malaria Eradication Research
Agenda (malERA) Refresh Consultative Panel on Basic Science and Enabling Technologies.
Electronic databases were systematically searched for published literature between January 1,
2010, and July 2, 2016, without language limitations. Panelists were invited to recommend
additional literature and additional ongoing research projects. A 2-day workshop was held
with the majority of the panel members, including field researchers, specialists from basic sci-
ence, malaria genomics and epigenomics, regenerative medicine, and National Institutes of
Health representatives. The panel broke into 6 breakout sessions to identify the problems that
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Table 1. A listing of the important research areas highlighted in malERA 2011, the progress made since then, and the remaining areas that require

additional research.

Research Area

Transmission Biology
(Gametocytes to
Mosquito)

Infection Biology
(Mosquito to Liver)

Biology of Blood-stage
Parasites

Persistence of Parasites
and Mosquitoes

Additional Technological
Developments

Accomplishments in Past 5 years

Improved understanding of transcriptional and epigenetic
control of sexual development

Drug screens targeting transmission stages

Improved understanding of mosquito host-seeking behavior
and olfaction biology

Improved understanding of mosquito—parasite interactions

Anopheles midgut cell line model for in vitro ookinete
production and invasion

Humanized mouse model for entire life cycle of Plasmodium,
including P. vivax hypnozoites and liver stages

In vitro models for Plasmodium liver stages
Genetic crosses in mouse model
Primate models for P. cynomolgi

Controlled human malaria infections with sporozoites and
blood-stage parasites

Improved production of continuous culture conditions,
including identification of host cell environments necessary
to support P. vivaxinvasion in culture and proof-of-principle
that human hematopoietic stem cells can be immortalized,
expanded, and differentiated into reticulocytes

P. knowlesiin vitro culture adaptation

Identification and spread of mutations associated with
artemisinin resistance

Comparison of mitochondrial and lipid metabolism of P.
falciparum in sexual and asexual blood stages

P. vivax hypnozoites cultured in vitro

Mosquito dry season estivation and long-distance migration
observed in sub-Sahelian populations

Mechanisms of insecticide resistance identified
Mosquito genomic resources to identify population
substructure and allow comparative genomic studies
Genome-editing systems (CRISPR/Cas9, Zinc-finger
nuclease), posttranslational protein knockdown systems
(DD tag, Riboswitch), conditional genome deletion systems
(Cre-LoxP, FLP-frt, diCre), conditional gene expression
system (TetR-aptamer)

Proofs-of-principle for population suppression and
population modification/replacement of Anopheles using
gene drives

Colonization of important mosquito vector species

New techniques to improve antigen design and clinical
evaluation of vaccine candidates

Improved resolution in intravital imaging

References

[2-6]

[7—11]
[12-16]

[17-20]
[21-25]

[26, 27]

[28-30]
[31]
[32]

[33—40],
reviewed in [41]

[42-55]

[56, 57]
[58-64]
reviewed in
[65-67]
[68, 69]

[26, 28]
[70]

[71-73]
[74-77]

[78-86]

[94-100]

[101,102]

Remaining Gaps

Limited work on P. vivax gametocytes due to
lack of in vitro culture system

Methods to increase sporozoite availability

No in vitro culture system for P. vivax asexual
stages has been developed
Poor functional annotation of genes

Biomarkers for asymptomatic hosts
Ecology and migration rates of vector species
Long-term behavioral resistance studies

Coordinated efforts to generate knockout or
knockdown libraries to understand gene
function, especially in human parasites

Abbreviations: Cre-LoxP, genetic recombination system involving the Cre (Causes recombination) protein and /oxP (locus of X-over P); CRISPR/Cas9,
clustered regularly interspaced short palindromic repeats/associated protein-9 nuclease; diCre, dimerizable Cre recombinase; DD, destabilization domain;
FLP-frt, Flipase used to recombine two frt domains; malERA, Malaria Eradication Research Agenda; TetR, tetracycline repressor.

https://doi.org/10.1371/journal.pmed.1002451.t1001

need to be solved in asexual blood stages, liver stage and mosquito, mosquito, P. vivax,

population genetics and resistance, and transmission. The panel discussed what research is
needed to address these problems and considered 6 crosscutting themes in CRISPR
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technologies, immunology and malaria vaccines, genomics tools for malaria, metabolism and
malaria, structural biology, and diagnostics for malaria. Each group fed back to plenary ses-
sion, where further robust discussions and input occurred. This helped refine the opportuni-
ties and gap areas in which research is needed. The final findings were arrived at with inputs
from all panelists and several iterations of the manuscript.

Advances, challenges, and opportunities in transmission biology
Gametocytes

Plasmodium transmission begins with the development of sexual forms of the parasite (known
as gametocytes) in an infected human host and their subsequent transfer to an anopheline
mosquito following a blood meal (Fig 1). This stage represents a key bottleneck in the parasite

Sporogonic cycle

Mosquito

Where do they go?

P, vivax

Exoerythrocytic
gametocytes

ookinete stages

male gamete

gametocytes

Biomarkers . stage IV gametocyte

stage Il gametocyte schizont

S

gametocyte Asexual eeg
0...
cycle gpo

stage Il gametocyte

Sexual

W many can transmit?

Erythrocytic stages

Fig 1. Schematic depicting the human and mosquito life cycles of Plasmodium, highlighting critical questions at specific points within the life
cycle.

https://doi.org/10.1371/journal.pmed.1002451.g001
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life cycle and thus is an attractive opportunity for disrupting disease transmission. As shown
in Box 1, in the past 5 years significant and exciting progress has been made in understanding

Box 1. Opportunities for the next 5 years

1. Functional genomics

« Identification of regulatory sequences within the parasite genome, similar to the
human Encyclopedia Of DNA Elements (ENCODE) project,

o Genome wide annotation of gene function in human parasites to identify sets of
genes involved in discrete cellular processes, including drug resistance,

o Improved scalability of CRISPR/Cas9 technology in asexual parasites to allow for
both pooled, genome-wide approaches (large scale) and single cell transformation
(microscale),

« Greater collaboration between researchers to avoid overlapping gene annotation
efforts.

2. Advances in mosquito biology

« Generation of a mosquito consortium to evaluate promising gene drive-based strate-
gies for efficacy at scale and/or over time and share knockout and/or transgenic
strains,

o Greater understanding of mosquito behavior and ecology,
« Colonization of important vector species,
« Development of in vitro mosquito infection models.

3. New vaccine approaches

o Improved adjuvants and identification of new targets, including better structures for
existing (and new) targets to improve structural approaches,

 Development of novel approaches with the potential to generate sterilizing immu-
nity (i.e., cognate antigens),

« Coordinated functional annotation of asexual-stage parasites to enable prioritization
of functional vaccine antigens,

o Greater access to samples and data from both human challenge studies and patient
samples demonstrating natural immunity,

« Application of gene-editing technologies to systematically understand the function

of hypothetical genes.

4. Biomarkers and diagnostics

« Indicators of transmissible gametocytes,

o Markers of liver-stage infection, in particular, hypnozoites,
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o Markers/assays to identify asymptomatic carriers,
o Identification of metabolic signatures of different stages of the life cycle.

5. Greater understanding of resistance to antimalarials and insecticides

« Identification of genes and pathways (i.e., the “resistome”) involved in resistance,
« Development of alternatives to insecticides,
« Use evolutionary approaches to prevent resistance.

6. Greater accessibility to P. vivax gametocytes

« Development of a P. vivax in vitro culture system (e.g., ookinetes to validate trans-
mission-blocking vaccine targets),

o Greater collaboration between groups to improve access to existing sporozoite
sources. This would be coupled with advances in cryopreservation to improve access
to sporozoites globally.

gametocyte development, including insights into the transcriptional and epigenetic control of
sexual differentiation and evidence for bone marrow sequestration [2-6, 103]. In the case of P.
falciparum, newly available in vitro systems for gametocyte maturation have been used in
small molecule screening, antibody reagent development, and transcriptional and metabolo-
mics analyses [7-11].

In contrast, the mechanisms of P. vivax gametocyte development remain largely unknown.
Gametocyte biology within this species is quite distinct—development takes just 2 to 3 days
and unfolds prior to any clinical symptom. P. vivax gametocytes appear susceptible to existing
antimalarial drugs that are not effective against P. falciparum gametocyte stages [104-106].
Progress in this area has been hampered by the absence of a comparable in vitro culture system
for asexual P. vivax parasites, which is an urgent priority, as it would enable the generation of
gametocytes for laboratory study, mosquito infections, and sporozoite production.

Another major area for discovery is the elucidation of the biological determinants of game-
tocyte transmissibility, especially in areas of low endemicity. Does the success of transmission
depend on gametocyte quantity and/or quality? Are there mosquito-specific factors that
actively recruit gametocytes to the biting site or do gametocytes preferentially sequester near
the skin? What factors and mechanisms enable male and female gametes to find one another
in the mosquito midgut? Biomarkers for transmission competency could enable a broader
understanding of the heterogeneity in natural infections.

Mosquito biology and host seeking

Transmission success also depends upon the interactions of the mosquito vector with both its
human host and ingested parasites. Since 2011, there have been major advances in understand-
ing the biology of olfaction and host-seeking behavior in mosquitoes via a combination of
behavioral assays, electrophysiology, and functional genomic approaches [12-16]. High-
throughput screens have identified new classes of attractants and repellents that are currently
being tested in mosquito traps and spatial repellent trials ([107-110], also see MESA Track at
http://www.malariaeradication.org/mesa-track). Moving forward, the identification of
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oviposition cues and the role of olfaction and taste in larval stages could facilitate the develop-
ment of additional tools for vector control. Comparative genomic analysis of odorant receptor
pathways that differ between anthropophilic and zoophilic species will help to elucidate the
molecular basis of host-seeking behavior. Recent studies have shown that the composition of
the human skin microbiota influences host attractiveness to mosquitoes [111] and identified
volatile substances produced by parasites in human hosts thought to preferentially attract mos-
quitoes to infected individuals [112]. Nevertheless, gaps remain in our knowledge regarding
the potential for gametocyte-seeking behavior by the mosquito and parasite-induced changes
to the human host that may influence mosquito behavior to enhance biting and transmission.

Parasite development in the mosquito

Fertilized zygotes develop into the motile ookinete, which in turn crosses the midgut wall.
Major advances have been made in understanding midgut invasion and early mosquito anti-
Plasmodium immune responses that target the ookinete stage. Several parasite genes that inter-
act with the vector to enable its invasion of epithelial cells have been identified [17-19], and
new insights have emerged regarding the role of epithelial responses to invasion and the corre-
sponding epithelial interactions with the complement-like system to limit ookinete survival
[113-117]. There is increasing evidence that the oocyst stage is also a target of innate immunity
in the mosquito [118, 119]. Genome-wide association study (GWAS) mapping of Anopheles
populations displaying different vector competence has identified mosquito genes that influence
parasite development [120]. This list of potential targets to disrupt malaria transmission could
be extended through functional screens using double-stranded ribonucleic acid (dsRNA)-medi-
ated gene silencing in mosquitoes and synthetic approaches such as single-chain antibodies to
block P. falciparum from infecting salivary glands.

A particular challenge for developing new interventions is the lack of culture systems to study
fertilization, ookinete biology, and parasite-midgut interactions in human malaria parasites. Plas-
modium species of rodents and birds have provided rapid proof-of-principle for new transmis-
sion-blocking strategies [121-123] and will likely continue to be critical for revealing the basic
biology of sexual and mosquito stages. The development of mosquito midgut-derived cell lines
(or organoids) supporting the in vitro culture of ookinetes and oocyst of human malaria parasites
would enable high-throughput transcriptomic and metabolomic studies as well as high-resolution
functional analysis of the parasite’s surface proteins and their interactions with mosquito cells.
These assays could also be used to validate transmission-blocking drugs and vaccines.

Advances, challenges, and opportunities in infection biology

The past 5 years have seen rapid progress in understanding the biology of Plasmodium infection
in the human liver. Increased availability of primary human hepatocytes has allowed the devel-
opment of multiple in vitro platforms, all tailored toward the concept of a miniaturized experi-
mental liver model [28, 29, 124]. Importantly, these innovations have allowed the liver stages of
infection to be fully recapitulated outside the human host for the first time [26, 125]. They have
also spurred the development of reagents to explore the biology of sporozoite infectivity and
liver stage development and provided the first glimpse of the P. vivax hypnozoite [26, 28].

In parallel, the development of humanized mouse models of P. vivax and P. falciparum
infection have opened up the potential for surrogate in vivo models of human liver infection
[26] and allowed the first genetic crosses of parasites (P. falciparum) outside of a primate [31].
Studies in primates continue to play an important role; the P. cynomolgi monkey model of
liver infection is the only in vivo relapse model of the P. vivax hypnozoite [30, 32, 126]. Com-
bined with controlled human malaria infections [34, 35, 38, 127, 128] and in vitro models,

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002451 November 30, 2017 7129



@PLOS ’ MEDICINE

these tools have highlighted key differences in the biology of different parasite species (specifi-
cally, P. vivax and P. falciparum) and paved the way for understanding the cellular biology of
liver infection and the immune response and for performing high-throughput drug candidate
screening.

To facilitate efforts aimed at eradication, we have identified a number of transformative
actions in the field of infection biology. A transformative innovation would be the in vitro cul-
tivation of large numbers of infectious P. falciparum and P. vivax sporozoites, bypassing the
mosquito vector. This would not only facilitate basic research but also contribute to whole-par-
asite vaccine development. Alternatively, advances in the preservation of sporozoite viability
and infectivity after mosquito dissection and/or the engineering of mosquitoes to produce spo-
rozoites at high levels would increase the availability and distribution of infectious material for
research purposes.

Improved liver-stage cell lines could also have a transformative effect on the pace of novel
drug and vaccine development, especially for P. vivax [28-30]. Cell lines provide readily avail-
able, immortal, and genetically identical cells, allowing researchers to reliably obtain the same
sensitivity measurements for each compound or antibody. This development could enable
high-throughput drug screening for discovery of liver stage-specific compounds targeting
either parasite functions [129] or human targets necessary for parasite development. More-
over, the availability of robust and inexpensive in vitro hepatocyte infection models for P.
vivax and P. falciparum may allow the development of better in vitro assays for antibody-
dependent inhibition of invasion (akin to virus neutralization assays) and cell-mediated killing
of infected cells. This could allow the discovery of human monoclonal antibodies with broadly
neutralizing activity, whose cognate antigens could then be used to create vaccines that give
sterilizing immunity. Recent advances in proteomics and mass spectrometry may also support
the identification of biomarkers for exoerythrocytic stages that are relevant in vivo.

Advances, challenges, and opportunities in asexual-stage biology
Defining the parasite “resistome”

Notable advances in asexual biology over the past 5 years include improvements in functional
genomics, such as more robust RNA sequencing methods [130-132], a deeper understanding
of transcription factors such as activator protein 2 (ap2) transcription factors [133] or alterna-
tive RNA splicing [134], and whole genome sequencing and genotyping of both field isolates
and evolved cultures (see Table 1). Due to its rapidly decreasing cost and increasing accuracy,
sequencing has accelerated our understanding of the mechanisms and modes of action of cur-
rent and new antimalarials through drug-resistant parasite selection in vitro (reviewed in
[135]) as well as population genetics of the parasite in vivo [62, 136]. Although numerous
studies have described using in vitro evolution and whole genome analysis to both find targets
of new antimalarial compounds and identify genes conferring resistance [62, 137, 138], in
most cases, only a handful of genes were identified. Now that single cell sequencing is becom-
ing a reality [139], we are in a position to identify every gene (and potentially allele) that con-
tributes to drug resistance, thus defining the parasite “resistome.” The complete genetic basis
of parasite drug resistance should provide better molecular markers of whether parasites have
acquired resistance to drugs that may be used in elimination campaigns, informing drug or
drug combination selections (See malERA Refresh paper on resistance [140]).

Systematic characterization of the asexual-stage parasite

The systematic knockout of genes in P. berghei has led to numerous advances in our under-
standing of fundamental asexual biology [141, 142], including the P. berghei identification of
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essential genes and pathways [143-146], greater understanding of merozoite invasion and
egress [147-150], discovery of the parasite’s export machinery [145, 151, 152], and revealing
how the red cell cytoplasm and membrane are remodelled [153, 154]. Such studies point to the
critical nature of these processes and have opened the possibility of targeting them with drugs
or vaccines.

Yet, major gaps remain in our knowledge of gene function in P. falciparum and, to an even
greater extent, in other species (including P. vivax, P. ovale, and P. malariae) in which genetic
diversity is also relatively uncharacterized. Although in many cases, genomic variants can be
readily identified in sequencing data, poor annotations for predicted genes in the P. falciparum
genome continue to slow progress. For example, we know little about the cellular function of
the pfkelch13 gene, a major contributor to artemisinin resistance ([62, 155, 156], reviewed in
[67]). Given that it is more efficient and inexpensive for the community to work together to
functionally annotate the P. falciparum genome systematically rather than in a 1-researcher-
1-gene fashion, coordinated large-scale projects with a focus on the easily accessible P. falcipa-
rum asexual blood stage should be considered. Such systematic data would also help in the
interpretation of whole genome sequencing data from drug- or vaccine-resistant parasites.
Desirable genomic annotations include the location of key transcription factor binding sites,
transcriptional start and stops sites [157], epigenetic chromatin modifications, and the cellular
localization of encoded proteins. These consortium-acquired data are critical to predict whether
genetic variants discovered through genome sequencing of model organisms and humans are
indeed functional and could also help prioritize antigens for vaccine development. In addition,
if better in vitro culture systems can be developed for P. vivax (see “Advances, challenges, and
opportunities in transmission biology”), these systematic approaches could be extended to this
important species. A potential model for such a consortium-based effort is the human
ENCODE project, which has identified functional elements in the human genome [158].

Using metabolomics to identify biomarkers and develop diagnostics

There have been major advances in the use of modern mass spectrometry-based methods for
identifying and profiling metabolites from parasite-infected cells [159-161] as well as determin-
ing the mode of action of drugs through the metabolic perturbations of exposed parasites [162-
165]. Two key areas in which metabolomics-based approaches have yet to make a significant
impact are biomarkers and diagnostics. Given the difficulty and cost associated with identifying
infected individuals (particularly those who are asymptomatic—see malERA Refresh paper on
reservoir and transmission [166]), the development of effective metabolomic biomarkers with
significant correlation to infection would represent a critical advance. Furthermore, to deter-
mine host markers of infection, field samples across a broad range of infectivities, including
asymptomatic carriers, should be studied using metabolomic methods. Such analyses should
also aim to span all Plasmodium parasite species as well, particularly P. vivax.

The question of persistence: Where do parasites—And
mosquitoes—Hide?

In the drive towards elimination and eradication, a key question is how and where malaria
infection persists in both humans and mosquitoes, both in individuals as well as populations.
Recent genomic studies indicate that parasites may also persist in an additional zoonotic reser-
voir in nonhuman primates [167-169], although how this contributes to disease transmission
in humans is currently unclear.

Persistence of malaria occurs in 2 modalities—asymptomatic carriers and latent liver stages.
The asymptomatic carriers represent a significant threat to the reintroduction of malaria; thus,
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the identification of such carriers requires a heightened level of awareness and detection. The
absence of symptoms in an individual may reflect the presence of disease-prevention host
responses in the absence of sterilizing immunity, thereby allowing persistent parasitemia or
the sequestration of parasites in sites (e.g., the liver or bone marrow) in which they are “hid-
den” from the immune system. Understanding the relative contributions of both human
immune responses and parasite biology will be essential to maximize the efficacy of antimalar-
ial interventions, particularly vaccines.

Parasite persistence in the liver is a major hurdle for elimination efforts, particularly for P.
vivax, because of its rapid development of gametocytes in humans, enabling transmission
before the onset of clinical symptoms. Insights have emerged from studies of nonhuman pri-
mate models and humanized mouse models [26] in which parasite forms resembling hypno-
zoites demonstrated some biologic activity. These findings imply that sensitive technologies,
such as proteomics and metabolomics, may identify markers likely secreted at these stages.
Such markers would require field validation but ultimately could be incorporated into point-
of-care diagnostics, eliminating the need for primaquine or tafenoquine in mass drug adminis-
tration campaigns and informing epidemiological studies of the load of hypnozoite infection
in endemic regions.

The transmission of Plasmodium infections with low or submicroscopic levels of circulating
gametocytes suggests the possibility of nonrandom sequestration of gametocytes at sites in
peripheral skin that are accessible to mosquitoes. P. falciparum gametocytes have recently been
found to have an extended maturation period in the bone marrow [103, 170]. A clear implica-
tion of this observation, however, is that gametocytes detected in the peripheral circulation
may not accurately reflect overall or infectious gametocyte levels and that more sensitive assays
are needed to identify potential sources of transmission.

Mosquito vector persistence

The aspects of vector biology that enable malaria persistence remain to be investigated and will
be critical not only for informing and targeting current elimination and eradication strategies
but also for the development and successful deployment of novel vector-based interventions.
Recent data suggest that, in Africa, both mosquito estivation (dry season diapause) and long-
distance migration contribute to the persistence of sub-Sahelian mosquito populations follow-
ing a dry season, but in a species-specific manner [70]. New genomic resources have facilitated
the understanding of fine-scale mosquito population structures [77, 171] suggesting large and
stable populations [74-76]. The contribution of the observed genomic patterns to population
persistence is unclear at this point, and a better understanding of the life history, ecology, and
migration rates of vectors that result in the observed genomic patterns between populations is
needed. Similar studies in non-African mosquito populations are needed.

Mosquitoes also persist through physiological resistance to insecticides (see malERA
Refresh paper on resistance [140]), either through target site mutations, increased expression
of detoxifying enzymes, or cuticular thickening. Genomic markers associated with resistance
continue to be identified, yet together they do not adequately explain all the variation in insec-
ticide resistance phenotypes observed in natural populations, and their relative functional
impact in the field remains poorly understood.

Mosquito persistence may also occur due to heritable changes in behavior selected for by
control interventions, so-called behavioral resistance. Recent work has captured mosquito
interactions with bednets using mosquito-tracking cameras [172] and could be extended to
other interventions (e.g., traps, sprays, repellents). Consistent longitudinal studies are also
needed to track changes in mosquito biting behavior (e.g., outdoor versus indoor, evening
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versus night) after the use of interventions and to discriminate these changes from variation in
species frequencies at specific sites. Subsequent genomic analyses could then reveal if there is a
genetic component to these modified behaviors.

Technology and its application to malaria biology
Fundamental technologies: Genomics and transcriptomics

Whole genome sequencing has already had a major impact on multiple areas of parasite and
vector research. It has transformed our understanding of parasite biology and drug resistance
(see “Advances, challenges, and opportunities in asexual-stage biology”). In addition, it has
been widely used to study the population genetics of mosquito species in the field [74-76,
173], and the genomes of 19 Anopheles species spanning 3 subgenera and including major and
minor malaria vectors from diverse geographical locations have now been sequenced [77,
171]. These genomic resources have improved our understanding of the patterns of gene flow
within and among mosquito populations. These “big data” resources available to the research
community allow for powerful comparative functional and evolutionary analyses that will help
elucidate the common basis of vector competence and identify effective vector control targets
across multiple species. Recent work using these datasets has identified a reproductive trait
with consequences for vectoral capacity that has evolved within the Anopheles genus and pres-
ents new potential targets to induce sterility in field populations [174-176]. Additional targets
may be identified as our understanding of the biological coordination of simultaneous egg
development and parasite transmission is improved. The declining cost of sequencing will
make such studies more feasible in the future, such that a mosquito resistome—similar to the
parasite resistome—may be compiled.

Further advances in genomic technology will enable a detailed analysis of natural popula-
tions of Plasmodium spp. at a worldwide scale. These include single cell technologies for
genome sequencing and transcriptomic analyses, genotyping, and whole genome sequencing
from dried blood spot samples. In addition, further comparative genomics [177] among all
Plasmodium species infecting humans as well as those infecting nonhuman primates should
identify key pathways in host switching. Genomic analysis of longitudinal samples will allow
for the identification of population structure changes associated with changing epidemiology
and emerging drug resistance. Coupled with gene-editing technologies, hypotheses generated
by comparative genomics can be functionally tested.

Technical advances in RNA sequencing now make it feasible to interrogate the dynamic
gene expression profiles of both the human host and the parasite during infection. This will
provide new insights into the host response during infection and the potential adaptation of
parasites during the infective process.

Gene-manipulation technologies: Genome editing and transgenics

Genome engineering tools, such as CRISPR/Cas9 systems (see glossary in the malERA Refresh
Introductory paper [178]), have transformed the ability to manipulate the genomes of P. falcip-
arum, P. berghei (reviewed in [179]), and Anopheles and understand gene function. CRISPR/
Cas9-based genetic engineering of P. falciparum asexual blood stages has allowed for more
complex genetic modifications within the parasite; for example, the tetracycline repressor pro-
tein (TetR) aptamer system to control gene expression [84] utilized CRISPR/Cas9 as an initial
step to introduce the aptameric cassette. Beyond CRISPR/Cas9, however, there have been sev-
eral other successful gene-editing technologies (see Table 1).

With these powerful tools in place, we can now scale up the generation of conditional and/
or complete knockout parasite libraries containing every single gene in the genome. Such an
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effort would greatly enhance our understanding of the biology of the parasite at all stages of
development, as well as identify the functions of many hypothetical genes.

Gene-manipulation technologies: Gene drives

Mirroring the advances in gene-editing capabilities in the parasite, Anopheline spp. genomes
can also now be engineered with unprecedented precision (see Table 1). Recent reports show
that CRISPR/Cas9 gene-editing tools can be used for the generation of gene-drive systems [91,
92] that manipulate genetic inheritance in mosquitoes to spread anti-Plasmodium transgenes
(population modification/replacement strategies) or lethality-inducing transgenes (population
suppression strategies) through natural mosquito populations. Mendelian inheritance predicts
50% of offspring will inherit a transgene carried on one of a parent’s chromosomes. Genetic
drive is the increased transmission of a genetic element to over 50% of offspring so that it
increases in frequency in each generation. A gene drive typically refers to an artificial trans-
gene that shows genetic drive by giving it the ability to trigger its own replication. A gene-drive
transgene is copied from one chromosome to its homologous chromosome within germ line
cells. With both chromosomes carrying a copy of the transgene (a homozygous germ line), all
sperm or eggs derived from these cells will also carry the transgene, and if copying occurs in all
germ cells, 100% of offspring will inherit the gene drive. This allows rapid spread of the gene
drive (and its anti-Plasmodium cargo) into the mosquito population. A valuable debate on the
safe use of gene drive systems has begun within the scientific community [180].

The feasibility of using gene drive strategies for mosquito control will need additional
research efforts in 3 key areas. First, an understanding of mosquito mating biology and the
determinants of male mating success and female mate choice will need to be developed. Colo-
nization is likely to impact the mating ability of species that exhibit such a complicated mating
behavior as swarming; mating competitiveness will be a key determinant of gene drive success.
Second, effective, “evolution proof” gene-drive systems should be generated to preempt the
selection of mosquitoes that are resistant to the drive mechanisms, which would otherwise
reduce the efficiency of the drive. Gene drives will need to be optimized by testing different
gene-drive architectures, especially if CRISPR/Cas9 mechanisms prove problematic. Third,
effective antimalarial genes will need to be evaluated in a reliable and reproducible manner;
many anti-Plasmodium factors have been identified and should be systematically tested in lab-
oratory conditions for their ability to block parasite development within the mosquito host.

Consideration should be given to the formation of a consortium to evaluate and prioritize
promising transgenic strategies and test these in multiple anopheline species and against a
number of Plasmodium isolates. This represents an opportunity to avoid duplication of work;
however, we would also argue for head-to-head comparison of transgenic strategies. Such a
consortium could centralize resources, particularly in developing transgenic mosquitoes (e.g.,
injection service, mail-order mutants) and potentially a mutant library, but, currently, the
space required for mosquito-line maintenance prevents this. As forward and reverse genetic
screens become more realistic, we should develop methods to cryopreserve mosquito lines or,
more realistically, store plasmids for injection to recreate lines as needed.

Cell- and tissue-based technologies

Since the discovery of malaria parasites by microscopy [181], imaging has played a central role
in malaria research. However, recent advances in imaging techniques have allowed visualiza-
tion of the parasite and its interactions with the mammalian host and insect vector at an
unprecedented level of resolution [101] [182] [102]. We can expect that imaging will reveal
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other novel insights into the biology of human malaria parasites and play a major role in the
science of malaria eradication.

New technologies to support tool development: Biomarkers and novel
diagnostics

As our understanding of parasite biology advances—including insights into sequestration and
dormancy—the potential to leverage emerging technologies to support the discovery of bio-
markers of infection (see above) increases. Such insights into parasite biology are laying the
foundation for novel diagnostic approaches based on more sensitive techniques to detect para-
site byproducts (e.g., hemozoin) [183] or volatile substances [184]. When noninvasive, rapid,
and inexpensive, these diagnostic approaches are likely to facilitate the identification of
infected individuals who may be asymptomatic and/or functioning as reservoirs (see malERA
Refresh papers on Tools [185] and the Reservoir and Transmission [166]).

Exosomes are key new players implicated in intercellular communication without direct
cellular contact [186] and have a potential role as biomarkers [187]. The release of microparti-
cles is augmented in human malaria [188, 189], and exosomes containing parasite proteins
have been shown to be produced by infected cells [190] as well as by parasites [191, 192].

New technologies in vaccine development and leveraging existing
human volunteer sample datasets

Protective immunity requires that human hosts recognize and respond appropriately to para-
site-derived antigens and epitopes. Such immunity is complex, however, requiring both innate
and acquired responses and biological regulation of such responses as well as ensuring the
responses’ durability. Malaria parasites utilize a number of mechanisms to evade these immune
responses, which infected hosts must then overcome. In this context, there is a fundamental gap
in understanding the correlates of protective immunity in the human host that target exoeryth-
rocytic-stage parasites in both P. falciparum and P. vivax. Multiple new technologies are now
available to identify antigens and epitopes that are the targets of innate and acquired immune
responses. Examples include high-throughput genomic sequencing, transcriptomics, and prote-
omics. Structural vaccinology [193-195] has proven immensely powerful in viral vaccine devel-
opment through improved immunogen design and is now being applied to asexual blood stages
[94-97]. Near-atomic resolution cryo-electron microscopy is now being used to inform antigen
and drug target selection as well as the rational design of potent immunogens [196-198]. In
addition, new technology platforms and novel adjuvants are being incorporated into vaccines to
ensure appropriate immune responses are elicited. Approaches based on structural biology [98-
100] and genomic sequencing [199] are now being introduced into the clinical evaluation of
candidate malaria vaccines. These efforts provide an opportunity to further define the effective
targets as well as the nature of protective immune responses.

An effective P. vivax vaccine strategy also needs to contend with the challenge of relapse
infections. To prevent “relapse outbreaks,” antirelapse vaccines will need to be multistage and
multivalent, including components to suppress blood-stage parasites emerging from the dor-
mant liver stages as well as block transmission. There are relatively few P. vivax vaccine candi-
dates progressing currently through the global pipeline [200].

Controlled human challenge studies are potentially transformational in enabling our
understanding of the human immune response to malaria. Coupling controlled infections
with technical advances for interrogating human immune cells in real time can give us new
insights into both the temporal response and the contributions from innate and acquired
immunity. Additionally, deeper interrogation of the immune profile of naturally acquired
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infections could also provide key insights. Providing access to them will require forethought in
preparing future proposals, particularly with respect to human subject approvals, repository
deposition, and community sharing. Harnessing available systems through existing networks
as well as ongoing clinical trials could provide the necessary reagents and access to human
samples.

Drug design and screening

The identification of potential targets through metabolomics and systems biology approaches
coupled with advances in structural biology is now facilitating the design of compounds likely
to interact with such targets. Moreover, high-throughput screening technologies are facilitat-
ing more rapid identification and prioritization of compounds for further investigation as
potential leads, though corresponding techniques in high-throughput synthesis and character-
ization of small molecules require further development. In a reverse approach, high-through-
put phenotypic screens are also enabling the selection of compounds whose structures can
subsequently be used to inform the identification of potential molecular interactions and met-
abolic pathways for further analysis as targets for pharmacologic intervention (reviewed in
[201]). It is important to note that because malaria primarily affects the developing world, the
opportunity for profit is reduced. Malaria, with the assistance of the community and funders
such as Medicines for Malaria Venture (MMV), has and will continue to function as a model
for open source drug discovery [202-204].

Technologies targeting mosquito-based interventions: Paratransgenesis
and genetically modified mosquitoes

Recent years have seen a focus toward the identification of microbial populations that can
block parasite development in the mosquito vector [205-208]. Genetic modification of these
bacterial populations (paratransgenesis) could be a key tool, particularly for the control of out-
door biting and resting mosquito populations that are not currently targeted by insecticide-
based strategies. Advances in Wolbachia bacteria experiments in Anopheles mosquitoes are
particularly promising. Wolbachia are intracellular endosymbiotic bacteria that, in some
insects, spread through populations by maternal transmission and cytoplasmic incompatibil-
ity. These endosymbionts were shown to block malaria parasite development in artificial set-
tings [209] and were negatively correlated with Plasmodium infections in natural A. coluzzii
populations from Burkina Faso [210, 211]. Two key research priorities are the development of
a method to transform Wolbachia to deliver effective antiplasmodial genes and understanding
the role of natural Wolbachia infections in malaria transmission dynamics.

In light of widespread resistance to currently used insecticides, the identification of alternative,
safe, active compounds that can extend the lifetime of long-lasting insecticide-treated nets (LLINs)
and indoor residual spraying (IRS) is imperative. The study of key pathways in mosquito repro-
duction, susceptibility to infection, blood feeding behavior, and longevity that can be effectively
targeted to reduce vectoral capacity is therefore a priority. For example, new sterilizing com-
pounds that interfere with key hormonal reproductive pathways, such as those regulated by juve-
nile hormone and 20-hydroxyecdysone, could be incorporated into mosquito nets to reduce
mosquito fertility, including insecticide-resistant mosquitoes that may survive exposure to the net.

A key issue in applying these novel strategies will be achieving effective colonization of
anopheline species, as the lack of mosquito colonies is preventing studies on the biology of
important malaria vectors. An important breakthrough has been the recent colonization of A.
darlingi, the most important American vector [93]. On the road to eradication, a deeper
understanding of the biology and behavior of these species will be essential.
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Conclusions

As illustrated above, recent advances in basic science are providing deeper insights into the
biology of the parasite, the mosquito vector, and the human host as well as their interactions at
molecular, cellular, and organismic levels. Coupling these insights with recent technologies
that help pinpoint potential methods to intervene or disrupt essential interactions can spur the
use of novel tools to help eliminate and, ultimately, eradicate malaria.
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Abstract

Resistance to first-line treatments for Plasmodium falciparum malaria and the insecticides
used for Anopheles vector control are threatening malaria elimination efforts. Suboptimal
responses to drugs and insecticides are both spreading geographically and emerging inde-
pendently and are being seen at increasing intensities. Whilst resistance is unavoidable, its
effects can be mitigated through resistance management practices, such as exposing the
parasite or vector to more than one selective agent. Resistance contributed to the failure of
the 20th century Global Malaria Eradication Programme, and yet the global response to this
issue continues to be slow and poorly coordinated—too often, too little, too late. The Malaria
Eradication Research Agenda (malERA) Refresh process convened a panel on resistance
of both insecticides and antimalarial drugs. This paper outlines developments in the field
over the past 5 years, highlights gaps in knowledge, and proposes a research agenda
focused on managing resistance. A deeper understanding of the complex biological pro-
cesses involved and how resistance is selected is needed, together with evidence of its pub-
lic health impact. Resistance management will require improved use of entomological and
parasitological data in decision making, and optimisation of the useful life of new and exist-
ing products through careful implementation, combination, and evaluation. A proactive, col-
laborative approach is needed from basic science and the development of new tools to
programme and policy interventions that will ensure that the armamentarium of drugs and
insecticides is sufficient to deal with the challenges of malaria control and its elimination.

Summary points

« Since 2011, significant progress has been made in understanding resistance. Surveillance
has been expanded and improved in many malaria-endemic countries and there is a bet-
ter understanding of the genetic basis of resistance, identifying some molecular markers
that can be used to track its emergence and spread. Better tools to measure and manage
the intensity of resistance are available.
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« However, our response to increases in the prevalence and intensity of resistance has
been slow and reactive. A promising pipeline of new vector control tools and therapeu-
tics is in development, but all actors in the malaria community need to plan proactively
how to implement, integrate, and evaluate these products.

Quantifying the public health impact of resistance has been difficult, particularly for
insecticides. For both insecticides and drugs, defining the minimum essential evidence
required for policy makers to manage resistance and ensuring that programs employ
rigorous quality assurance in collecting and managing these data are critical.

 As malaria control increases, the selection pressure on the parasite or mosquito vector
increases. Strategies for resistance management are therefore crucial for all stages of
elimination. Countries need to allocate funding and human resources to effectively
manage the threat of resistance and sustain the gains achieved to date.

o This paper reviews the current knowledge base and identifies research priorities
addressing resistance to drugs and insecticides. It is a result of a unique collaborative
effort of experts in drug and insecticide resistance brought together for the malERA
Refresh process.

Introduction and rationale

Over the past decade, unprecedented progress has been made in reducing malaria morbidity
and mortality [1]. However, growing resistance to the first-line treatment for P. falciparum
malaria, artemisinin-based combination therapies (ACTs), and the insecticides used to sup-
press mosquito vectors threaten the sustainability of recent gains in malaria control and lon-
ger-term prospects for elimination.

Vector control and antimalarial treatment depend on a limited armamentarium, and when
single drugs and insecticides are widely deployed, selection pressure is intense and the emer-
gence of resistant parasites and mosquitoes is inevitable.

Drug and insecticide resistance were crosscutting issues in the original malERA (Malaria
Eradication Research Agenda) series in 2011 [2]. However, the parasite and vector communi-
ties rarely interact. The increasing urgency of these issues and the contrasting operational
responses warranted a dedicated panel in the malERA Refresh process. The failure of drug
treatment has human consequences: recurrent parasitaemia, severe malaria, anaemia, and
associated morbidity and mortality. In the early 2000s, resistance to single antimalarials led to
policy changes recommending deployment of ACTs [3]. In contrast, resistance to the most
widely used class of insecticide, pyrethroids, was first documented in the 1980s, but pyrethroid
monotherapies still dominate current control efforts [4].

This paper aims to review developments in drug and insecticide resistance over the past 5
years (Box 1), discuss gaps in knowledge, and identify key research priorities (Box 2).

Methods

The findings presented in this paper result from an extensive literature review of published
and unpublished materials and the deliberations of the 2015 malERA Refresh Consultative
Panel on Insecticide and Drug Resistance. Electronic databases were systematically searched
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Box 1. Progress over the past 5 years in drug and insecticide
resistance research

« A promising pipeline of new therapeutics, insecticides, and noninsecticidal vector con-
trol tools is in development, largely due to the work of the Medicines for Malaria Ven-
ture (MMYV) and the Innovative Vector Control Consortium (IVCC)

o Recognition of the impact and importance of drug and insecticide resistance with the
creation of the WHO Global Plan for Insecticide Resistance Management in malaria
vectors (GPIRM) and WHO Global Plan for Artemisinin Resistance Containment
(GPARC)

Identification of genes and molecular markers associated with drug and insecticide
resistance

Improved understanding of resistance mechanisms in parasite and vector populations

Global databases to monitor drug and insecticide resistance

« Development of new tools to study resistance in vivo and in vitro, e.g., ring-stage sur-
vival assay, parasite clearance estimator, human blood-stage challenge studies for drug
resistance, and bioassays that measure the intensity of insecticide resistance

for published literature between January 1, 2010, and November 2, 2015, without language
limitations. Panellists were invited to recommend additional literature. A 2-day workshop was
held with the majority of the panel members, including specialists from basic science and
product development, field researchers, and WHO representatives. The panel broke into 2
working groups to identify the problems that need to be solved in insecticide and drug resis-
tance and what research is needed to address these problems. Each group fed back to the ple-
nary session, in which further robust discussions and input occurred. This helped refine the
opportunities and gap areas in which research is needed. The final findings were arrived at
with input from all panellists and several iterations of the manuscript.

What do we know about resistance?

Insecticides for malaria vector control are limited to pyrethroids for long-lasting insecticidal
nets (LLINs) and pyrethroids, organochlorines, organophosphates, and carbamates for indoor
residual spraying (IRS). Vector resistance has been detected across Africa to all insecticide clas-
ses. However, resistance to the pyrethroids is the most widespread [5]. In Asia, insecticide
resistance is common in some Anopheles species [6]. Sixty countries have reported resistance
to at least 1 insecticide, but the scale of the problem is likely to be much greater [7].

Despite ubiquitous pyrethroid resistance in some areas, millions of pyrethroid-impregnated
nets are distributed annually. Once distributed, these nets can contribute to the selection of
resistant vectors for the duration of their 3-year life. In Burkina Faso, the intensity of the pyre-
throid resistance seen in A. gambiae increased 10-fold in a single year [8], and this trend is
apparent in multiple locations throughout Africa [9]. A. funestus also exhibits resistance to
multiple insecticides at increasing intensities [10-12]. Proactive defensive strategies are critical
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Box 2. Research and development agenda for drug and insecticide
resistance

Crosscutting issues for drug and insecticide resistance
Applied research.
« Use in vitro, in vivo, and mathematical models to identify new combinations of drugs

and insecticides, and understand how mechanisms of action and mechanisms of resis-
tance inform this

« Determine which conditions are optimal for the emergence and spread of drug and
insecticide resistance and how these can be minimised

Evaluate whether resistance management strategies can restore susceptibility to drugs
and insecticides

Evaluate how new intervention types/paradigms should be introduced and assessed to
limit the selection of resistant phenotypes

Evaluate the optimal surveillance systems for resistance and determine the appropriate
data that must be collected (including technical approach, frequency, geography, and
temporal-spatial factors)

o Determine and validate the relationships between molecular markers and parasite/vec-
tor resistance phenotypes in different transmission settings

Policy and advocacy.

« Develop a framework to cost-elimination strategies that accounts for resistance man-
agement practices and increasing cost per case of malaria/malaria death averted and
identify sources of funding for these strategies

Agree on the process and minimum data required by the normative bodies to enable a
new drug or insecticide product to complete the route to market

« Devise market strategies and incentives to ensure a mix of drug and insecticide prod-
ucts remains available and is used strategically to manage resistance

o Assess which decision-support systems can efficiently and rationally be adapted to
drug and insecticide policies

Determine the minimum dataset required to guide drug and insecticide resistance
management and the level of evidence required to switch to new drug or insecticide
strategies

Insecticide resistance

o Analyse the most cost-effective ways of slowing the spread and emergence of insecti-
cide resistance (e.g., by using a combination of interventions, spatial mosaics, or mix-
tures of insecticides)

« Determine which spatial and temporal scale insecticide resistance management strate-
gies should be carried out
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o Study how much insecticide resistance has a negative impact on mosquito fitness sur-
vival or parasite development in the mosquito and investigate how this compares for
different active ingredients

« Develop a method to assess the age of resistant mosquitoes

« Define the optimal use of bioassays and molecular markers to accurately predict the
efficacy of vector control in relation to insecticide resistance

o Study the mechanisms of mosquito behavioural resistance and assess if this is sus-
tained across generations

o Assess which novel, noninsecticidal tools for controlling mosquito populations would
help to slow or prevent the emergence of resistance or restore susceptibility

Drug resistance

« Evaluate if the timing of community-based prevention, e.g., mass drug administration,
can be optimised to reduce the risk of emerging drug resistance

« Investigate why drugs such as quinine are less likely to develop resistance and use this
knowledge for future drug development

o Determine which approaches are most sensitive and specific to determine true drug
treatment efficacy (e.g., molecular correction) in P. falciparum and P. vivax parasites

o Define what studies are required by policy makers to evaluate the use of multiple
therapies

+ Define the minimal criteria for inclusion of existing and new drugs in multiple agent
regimes (e.g., efficacy, resistance, pharmacokinetic factors, and drug-drug interac-
tions) and whether these criteria change in different programmatic modes

o Study the extent to which human immunity masks the presence of drug resistance,
especially resistance to artemisinins

to reducing the spread and emergence of resistant phenotypes and preventing broad-spectrum
cross resistance to multiple insecticides.

In the case of the antimalarials chloroquine and sulfadoxine-pyrimethamine (SP), resistant
P. falciparum and P. vivax parasites evolved in the Greater Mekong Subregion (GMS) and the
island of Papua and South America, respectively [13,14]. Retrospective analysis of molecular
markers showed resistant P. falciparum parasites spread from Southeast Asia foci across Asia
and throughout Africa over several decades [15-18]. ACTs were promoted to prevent or retard
the selection of resistance by simultaneously administering 2 drug components with different
modes of action [19]. However, resistance to artemisinins and their partner drugs is spreading
and emerging independently among P. falciparum populations in the GMS [20-23].

Identifying resistance

Two main mechanisms of insecticide resistance have been identified: target site mutations
(such as kdr and ace) [24,25] and metabolic resistance involving mutation, duplication, or
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altered regulation of enzymes and transporters that increase insecticide metabolism or excre-
tion. Metabolic resistance has greater implications for malaria vector control because the effi-
cacy of a range of insecticides is usually affected [5,26].

Routine monitoring of insecticide susceptibility uses phenotypic bioassays that expose live
mosquitoes to a single dose of a given insecticide over a fixed time period and measure mortal-
ity. The results are highly variable; hence, more laborious methods utilising a range of insecti-
cide concentrations may be needed [27]. These assays have local utility but are often
logistically challenging. Larger numbers of mosquitoes can be screened using molecular tech-
niques, although it is unclear under what conditions validated molecular markers could serve
as a replacement for phenotypic assays or if this might be appropriate for malaria control pro-
grammes [28].

The mechanisms of insecticide resistance can manifest as major changes in the insect ner-
vous system or metabolome. Resistance may have an effect on insect longevity, mating com-
petitiveness, and vectorial capacity [29,30]. Alongside physiological resistance, there is
potentially also behavioural resistance, as increased mosquito numbers that bite or rest out-
doors have been observed. There is limited evidence on the genetic basis of behavioural resis-
tance, but determining whether vector control interventions are selecting a heritable trait
warrants further research [31].

Resistance to artemisinins is assessed in clinical studies by measuring the parasite clearance
in a patient in the first several days after treatment [32]. A lab-based assay that correlates with
the in vivo parasite response to artemisinins has also been validated [33]. Mutations in the pro-
peller domain of Kelch 13 (PF3D7_1343700) (K13) were identified as a major determinant of
artemisinin resistance and may be reliable molecular markers in the GMS [34,35]. Outside the
GMS, parasites with K13 mutant alleles are present in many areas at low levels; there is cur-
rently no molecular evidence to suggest that these alleles are being selected [22,36-38]. More
than 100 K13 mutant alleles have been reported outside of Southeast Asia [22,38-40], but
none have yet been associated with the slow-clearing phenotype [41]. One hypothesis is that
artemisinin resistance may require additional genetic determinants in these locations to allow
selection of K13 mutant parasites that exhibit the slow-clearing phenotype in vivo [20,42].
Nevertheless, the adoption of molecular markers to monitor drug resistance has been much
faster than markers to assess insecticide resistance.

Molecular markers correlated with resistance to nonartemisinin antimalarials have also
been identified. Polymorphisms or multicopy numbers in the P. falciparum chloroquine resis-
tance transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdrl) genes have been
associated with resistance to chloroquine and mefloquine [43,44] and polymorphisms or mul-
ticopy numbers in the P. falciparum dihydrofolate reductase (pfdhfr) and P. falciparum dihy-
dropteroate synthase (pfdhps) genes have been associated with resistance to SP [45]. Changes
in the prevalence of pfert and pfindrl alleles have been observed in many areas where ACT's
including amodiaquine or lumefantrine have been intensively used [46,47]. However, clinical
efficacy of leading ACTs that include lumefantrine, amodiaquine, piperaquine, or mefloquine
appears to remain acceptable in areas outside the GMS. Recent research suggests that plasmep-
sin 2-3 is associated with clinical and in vitro piperaquine resistance (PSA, piperaquine sur-
vival assay) but other markers could also be involved [48]. In Southeast Asia, intensive use of
dihydroartemisinin-piperaquine (DP) in parasites already resistant to piperaquine and artemi-
sinin has selected parasites with multiple resistance mechanisms, and high levels of treatment
failure to DP are now observed in Cambodia [49].

Chloroquine remains the recommended treatment for P. vivax, but resistance and declining
efficacy has been noted in several populations, and ACT's are recommended in some areas
[50,51]. There are no standardized molecular correlates of chloroquine resistance for P. vivax,
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but P. vivax multidrug resistance 1 (pvmdrI) has been associated with resistance [52]. Beyond
this, the understanding of resistance in nonfalciparum malaria is very limited.

Public health impact of resistance

While ecological studies have found broad evidence of dramatic health effects of spreading
drug resistance [18], efficient assessment of the public health impact of antimalarial and insec-
ticide resistance has been difficult. First, assessments of resistance prevalence are drawn from a
few sentinel sites, but the heterogeneity of resistance in neighbouring populations can be enor-
mous, making specific predictions difficult. Second, molecular markers are easier to measure
at finer spatial and temporal scales, but the relationship with the drug or insecticide response
is not direct [53,54]. Third, most policies on malaria treatment and vector control are imple-
mented nationally, so recommending policies for regions within a country may be operation-
ally unfeasible.

Drug resistance increases the risk of treatment failure and therefore transmission, but these
relationships can be difficult to establish in the field. Human factors, especially immunity,
affect treatment efficacy, so treatment failure in the whole population is not obvious until para-
site resistance is well established [55]. However, in children there is a clear relationship
between parasitaemia and anaemia, with associated morbidity and mortality [55,56]. Studies
have correlated the prevalence of molecular markers with the risk of treatment failure, but no
metric that works in all regions has been defined [57]. As a result, the prevalence of molecular
markers has had a limited impact on policies for routine antimalarial use [58]. This disconnect
is changing in the GMS, where ACT treatment failure has reached crisis levels [59], and rapid
assessments of molecular markers for resistance to artemisinins and partner drugs are cur-
rently being used [47].

There are few published studies on the epidemiological impact of insecticide resistance, so
decisions rely primarily on entomological end points. Evidence from a 5-country evaluation
attempted to assess whether LLINs remain effective in the presence of pyrethroid resistance,
although the studies were in areas with low to moderate resistance as measured in single-dose
bioassays without assessment of resistance intensity [60]. This study was not able to quantify
the effect on LLINs [59]. For IRS, the best evidence for an epidemiological impact of pyre-
throid resistance comes from settings where pyrethroids were replaced in IRS campaigns with
alternative insecticides and parasite prevalence rapidly declined [61, 62]. Similar evidence is
available from a study in an area of Sudan with pyrethroid resistance but carbamate suscepti-
bility, in which IRS with pyrethroids in addition to LLINs had no added impact, but changing
to carbamate IRS halved the malaria incidence [60].

Managing resistance, moving toward elimination

Optimizing drug and insecticide use. Avoiding parasite or mosquito population expo-
sure to a single selective agent is the central principle of resistance management. Ideally, insec-
ticidal compounds with different modes of action should be used simultaneously or in spatial
or temporal rotation. These principles, which are identical to those used in the management of
insecticides used for crop pests, have been outlined in the GPIRM in malaria vectors [63].
Unfortunately, implementation has been challenging; pyrethroid resistance is ubiquitous, non-
pyrethroid LLINs are not currently available, and other forms of vector control can signifi-
cantly increase costs [64]. New public health insecticides with different modes of action are on
the horizon [65], but we lack information on the effectiveness of the proposed strategies to
slow the emergence or spread of insecticide resistance, and there is no clear indication of how
they should be integrated alongside existing tools. This includes those that are noninsecticidal
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and products that work on different targets, e.g., spatial repellents and endocticides, whose effi-
cacy may not be influenced by insecticide resistance [65]. Another confounder is the applica-
tion of most insecticides for both agricultural and public health use. The impact of this on
public health is highly variable depending on crop type and volume and timing of insecticide
application.

What are the benefits of insecticide rotations, mixtures, or spatial mosaics of different com-
pounds? What is the impact of adding nonpyrethroid IRS where LLINSs are already deployed
at high coverage and quality? When should new insecticides be adopted? What is the ideal
rotation period or mosaic configuration? How many insecticide classes are needed for effective
rotation or mosaic strategies? Despite the absence of data to answer these questions, some
countries have already developed operational frameworks for resistance management that
could be adopted by other programmes [66].

ACTs are still effective in most regions outside the GMS. Optimisation of dose, duration of
treatment, timing of treatment, and pharmacokinetic-dynamic profiles in specific subpopula-
tions, e.g., children and pregnant women, should be systematically encouraged post-licensure
to maximise efficacy and slow selection for resistance. Pooled analyses have assessed the effect
of dosing strategies for the several currently used ACTs, but the uptake of this by malaria con-
trol programmes is limited [67]. Molecular markers are being used in addition to therapeutic
efficacy studies in specific locations in the GMS to choose treatment policies more accurately
[67], but far more complete information on all ACTs is needed.

Different published models diverged on the conclusion that implementation of multiple
first-line therapies could more effectively prevent the emergence of drug resistance compared
with the temporal rotation or sequential use of first-line treatments [68-71]. Multiple models
need to be evaluated and studies to verify this must be defined [72]. We also need to better
understand why parasites do not seem to have developed resistance to quinine and factor this
into future drug development efforts. In Southeast Asia, the use of triple therapies using exist-
ing antimalarials is currently being tested and could be considered in the context of multi-
drug-resistant malaria [73].

Assessment of the selective pressures and emergence of resistance to antimalarials is diffi-
cult with small-scale studies, but large-scale public health interventions may provide evidence.
For example, studies should be undertaken in countries using different drug combinations for
treatment and mass chemoprevention campaigns, such as seasonal malaria chemoprevention,
mass drug administration, or intermittent preventive treatment in pregnancy (IPTp). Coordi-
nation of these interventions in the same locality may provide one way to reduce or disrupt the
selection pressure exerted on a single class of compound [74].

Using data to support resistance management. Entomological data generated by coun-
tries vary in quantity and quality, and limited information flow between entomologists, pro-
gramme managers, and research institutes has hindered advocacy efforts around improved
resistance management. Linking entomological data to epidemiological outcomes is extremely
complex [75] and by the time resistance has a demonstrable public health impact, it may be
too late to intervene against it. However, South Africa [62], Zambia [76], and Equatorial
Guinea [64] have resistance management plans in place. Similarly, molecular marker surveil-
lance can inform which drug regimens are the most suitable for particular programmatic
modes. This approach is now routine in some African countries [74,77] but is not universal.
Drug-resistance monitoring in some countries also requires strengthening, and despite the
tighter link to public health impact, the ability to respond rapidly may be lost if resistance
monitoring is not well embedded. For both insecticides and drugs, defining the minimum
essential data required for policy makers to manage resistance and ensuring that programs
employ rigorous quality assurance in collecting and managing these data are critical.
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Resistance surveillance is weak in many endemic countries. Inadequate attention and fund-
ing have been allocated to entomological monitoring and insecticide susceptibility research.
Several countries in Africa have established sentinel sites for the longitudinal monitoring of
insecticide resistance [5]. However, the methods, timing, and sampling are inconsistent, mak-
ing meaningful inferences difficult [78]. Most of these sites use discriminating dose assays
[79]. All bioassays are performed on 3-5-day-old mosquitoes under standard insectary condi-
tions, so the effect of natural mosquito traits (e.g., age, blood-feeding status, circadian rhythm
[80,81], and climatic variables [82]) on resistance is not assessed or reported [83]. Molecular
species identification of mosquitoes undergoing resistance tests may also increase accuracy
when compared to morphological identification. Techniques have been developed to measure
the age distribution of mosquito populations in the laboratory [84], but a more precise, low-
cost, field-applicable method is needed to allow malaria control programmes to evaluate the
efficacy of vector control interventions is needed.

Anticipating the challenges of lower transmission. High-level use of interventions can
suppress malaria transmission but also increases the risk of selection of resistance, creating
new challenges at the later stages of elimination. Resistance surveillance in low transmission
regions is increasingly expensive, and maintaining human and material capacity in the context
of many other public health needs is crucial. The minimal criteria for the inclusion of new or
existing therapeutics or insecticides in a multi-agent regimen must be defined. For drugs,
these criteria might depend on transmission levels and could include pharmacokinetic-
dynamic profiles, mechanisms of resistance, cross resistance, and drug-drug interactions. The
corresponding parameters for insecticides of persistence/residual efficacy, mechanisms of
resistance/cross resistance, or compound interactions are equally relevant. If a robust resistant
phenotype can be defined, whole genome sequencing of parasites and vectors can identify
regions under selection very early in the process, giving clues to associated genetic changes
[85].

Market strategies and getting products to market. Single first-line antimalarial treat-
ments or insecticide monotherapies may be cheaper in the short term, but the long-term cost-
effectiveness will be compromised by increasing levels of resistance [86]. Development of nor-
mative guidance on product use within a multiyear programme of interventions is essential if
short-term decision-making is to change. The selection of products may be based on a number
of epidemiological, entomological, logistic, and financial variables. It is critical to develop a
framework that reliably costs the long-term elimination strategies, rather than short-term
‘delivered units’, and takes into account resistance management practices. As we head toward
elimination, the increased cost of keeping drugs and insecticides available for a diminishing
number of cases means incentives and market strategies for keeping the pipeline of products
active are paramount.

Clarity is needed on the evidence required by normative bodies to approve new products
and develop treatment guidelines. New tools are likely to have a higher unit price, so clear data
requirements and paths to their use require definition. Without this, programme financial
constraints; uncertainties around cost-effectiveness; and delays in recommendation, produc-
tion, and procurement could mean products to overcome resistance are underutilised. If this
situation becomes the norm, incentives for innovation will diminish and the pipeline of effica-
cious tools will soon be depleted.

Conclusion

Resistance is an inevitable consequence of drug and insecticide treatment, but the malaria
community as a whole has repeatedly failed to respond to this issue in a proactive way.
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Programme and policy decisions should be based on comprehensive resistance data, and this
should be coupled with improved efforts to understand the complex biological processes that
select for resistant phenotypes. The tools to surmount resistance are limited and little is known
about the most effective resistance management measures, so new therapeutics and vector
control products should have a clear route to market and be carefully implemented and evalu-
ated to optimise the choice of interventions. Multidrug and insecticide regimens are not
unique to malaria control and other disease systems such as HIV [87], tuberculosis [88], and
agricultural pest control [89] offer important insights into the management of insecticide- and
drug-based approaches. The malaria community must learn from other disease groups and
industries and heed the lessons of the past or risk further erosion of the malaria elimination
agenda as renewed efforts are undermined by resistance.
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Abstract

This paper summarises key advances in defining the infectious reservoir for malaria and the
measurement of transmission for research and programmatic use since the Malaria Eradi-
cation Research Agenda (malERA) publication in 2011. Rapid and effective progress
towards elimination requires an improved understanding of the sources of transmission as
well as those at risk of infection. Characterising the transmission reservoir in different set-
tings will enable the most appropriate choice, delivery, and evaluation of interventions.
Since 2011, progress has been made in a number of areas. The extent of submicroscopic
and asymptomatic infections is better understood, as are the biological parameters govern-
ing transmission of sexual stage parasites. Limitations of existing transmission measures
have been documented, and proof-of-concept has been established for new innovative
serological and molecular methods to better characterise transmission. Finally, there now
exists a concerted effort towards the use of ensemble datasets across the spectrum of met-
rics, from passive and active sources, to develop more accurate risk maps of transmission.
These can be used to better target interventions and effectively monitor progress toward
elimination. The success of interventions depends not only on the level of endemicity but
also on how rapidly or recently an area has undergone changes in transmission. Improved
understanding of the biology of mosquito—-human and human—mosquito transmission is
needed particularly in low-endemic settings, where heterogeneity of infection is pronounced
and local vector ecology is variable. New and improved measures of transmission need to
be operationally feasible for the malaria programmes. Outputs from these research priorities
should allow the development of a set of approaches (applicable to both research and con-
trol programmes) that address the unique challenges of measuring and monitoring transmis-
sion in near-elimination settings and defining the absence of transmission.
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Summary points

 Understanding the sources of transmission (the infectious reservoir) and those at risk of
infection at the population level in order to inform programmatic decision-making can
progress malaria elimination.

o There is considerable evidence for malaria infections at densities beneath the limit of
conventional diagnostics. However, the contribution of these low-density infections to
malaria transmission in different settings is not known.

Characterising the spatial and temporal heterogeneity of the infectious reservoir becomes
increasingly important as transmission declines if interventions are to be efficiently
implemented to accelerate malaria elimination.

« The proportional contributions of low-density, asymptomatic, and symptomatic infec-
tions will differ by malaria typology and will determine the programmatic approach
required to reduce transmission.

o Plasmodium vivax hypnozoites are undetectable with currently available diagnostics,
representing a major barrier to both understanding the transmission reservoir for this
parasite and its elimination.

o There is a need to standardise both existing transmission metrics and new metrics with
greater sensitivity, particularly for their use in low-transmission settings.

Introduction

Transmission of malaria requires sexual-stage parasites, gametocytes, in humans to be taken
up by female Anopheles mosquitoes when they feed. After a period of parasite development,
mosquitoes can then infect humans. A break in this cycle at any point interrupts malaria trans-
mission. Malaria control has historically focussed on the reduction of morbidity and mortality
of the human host rather than on the interruption of transmission from human to mosquito.
Understanding the variation in the relationship between infection (the presence of parasites in
an individual or mosquito) and infectiousness (the ability to transmit parasites to a mosquito
or human) at different transmission intensities and with different levels of intervention cover-
age is increasingly recognised as critical in the pursuit of malaria elimination.

In 2011, one of the main conclusions of the Malaria Eradication Research Agenda (mal-
ERA) process was the need to develop tools to measure transmission at low levels in elimina-
tion contexts. This article summarizes progress made since 2011 and for the first time develops
a research agenda addressing the reservoir of transmissible parasites and measuring transmis-
sion [1,2]. Findings and recommendations presented here result from a systematic search of
the literature and the deliberations of the 2015 malERA Refresh Consultative Panel on charac-
terising the reservoir and measuring transmission, including specialists from field and imple-
mentation science, entomology, epidemiology, and basic science.

Since the 2011 malERA process, research has ranged from illuminating the basic biology of
the development of sexual-stage parasites in humans and mosquitoes to evaluating operational
approaches targeting infectious individuals in endemic communities. Additionally, a harmo-
nised set of definitions relevant to malaria transmission and elimination has been developed
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Box 1. Terminology

Malaria typologies

Malaria typology is the characterisation of malaria epidemiology according to ecology
(climate and environment) and other determinants of transmission for the purpose of
guiding malaria interventions. Relevant ecologies include (but are not limited to) savan-
nah, lowland plains and valleys, highlands, desert and oasis, forest and jungle, coastal
and marshland, and urban or peri-urban. The unique features of malaria transmission
in each ecological area are also strongly driven by region-specific vectors and parasites
(species, biology, behaviour, insecticide and antimalarial drug susceptibility), human
biology and behaviour, and economic and health-system factors. These are discussed
more comprehensively in [4] and [5].

(Box 1) [3]. However, there remains a need to further validate a ‘toolkit” of metrics and associ-
ated surveillance activities to characterise the infectious reservoir and measure malaria trans-
mission that can be applied programmatically to direct and evaluate interventions and to
quantify progress towards malaria elimination. There are multiple factors that contribute to
malaria epidemiology including ecology, vectors, parasites, human biology and behaviour, and
economic and health-system factors (see Box 1), and these collectively make up a given ‘typol-
ogy of malaria. The selection of appropriate surveillance activities and metrics from this
toolkit will not only need to reflect variations in malaria ‘typology’ (Box 1) [3], but will need to
be adapted as malaria transmission declines (Fig 1).

This paper discusses progress in the measurement and understanding of malaria transmis-
sion, highlighting the different malaria typologies in which transmission occurs (Box 1). This
differentiation between typologies is needed to determine where existing strategies and sys-
tems can sufficiently achieve malaria elimination versus those where additional approaches or
tools are required.

Research agenda for characterising the reservoir of infection
Detecting malaria: Infection versus transmission

Malaria infection and transmission can be detected and measured with a variety of metrics
(Tables 1 and 2). Their suitability and discriminatory power, however, can vary widely across
settings and populations. To reliably confirm clinical malaria, a minimum diagnostic sensitiv-
ity of 200 parasites/uL blood is required [6]. Microscopy and some rapid diagnostic tests
(RDTs) meet this threshold [6]. In the absence of fever, some individuals will have parasitae-
mia levels detectable by microscopy and RDTs. These asymptomatic infections are particularly
common in areas of high transmission (i.e., above 25 clinical cases per week per 1,000 persons)
[7], where high levels of human immunity allow older individuals to carry relatively large para-
site burdens chronically [8]. Such individuals would be detected within mass screen and treat
(MSAT) programmes using currently available diagnostics. However, through the use of
molecular amplification methods, it is now clear that many individuals harbour low-density
malaria infections beneath the limit of detection of both microscopy and RDTs [9]. Meta-anal-
yses indicate that molecular methods detect up to twice as many P. falciparum infections as
RDT or microscopy [10], and approximately 5 times as many P. vivax infections [11,12]. This
gap in sensitivity may be more pronounced when compared against ultra-sensitive molecular
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Fig 1. Research needs and programmatic applications in measuring malaria transmission across the transmission spectrum. Range
of malaria transmission intensity (grey line) from very high intensity to postelimination settings. Current metrics (navy blue line) used for
routine measurement of malaria transmission at each level of transmission intensity. Knowledge gaps (orange line) in understanding the biology
and epidemiology of malaria transmission and the infectious reservoir at all levels of transmission intensity. Technical gaps (light blue line) in the
accurate measurement of transmission at each level of transmission intensity. Programmatic actions (yellow line) required for the interruption
of transmission and the prevention of reintroduction at each level of transmission intensity.

https://doi.org/10.1371/journal.pmed.1002452.9001
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Table 1. Summary of currently available entomological malaria transmission metrics.

Metric Definition [3]

Entomological
inoculation rate

Sporozoite rate

salivary glands

Human biting rate | Average number of mosquito bites | Risk of exposure | ¢ Human landing collection
(HBR) received by a host in a unit of time,
specified according to host and

mosquito species

Vectorial capacity | Rate at which given vector
population generates new
infections caused by a currently
infectious human case

https://doi.org/10.1371/journal.pmed.1002452.t001

Number of infective bites received | Transmission
per person in a given unit of time, intensity traps
(EIR) in a human population

Percentage of female Anopheles
(SR) mosquitoes with sporozoites in the

Measure of
transmission

Sampling method and resolution | Discriminatory power

¢ |Insensitive at low transmission
* Lack of standardised sampling design

* Collected by malaria control
programmes

* Human landing collection; light

¢ Resolution: Household or
community level

Risk of infection | ¢ Human landing catch; baited * Insensitive at low transmission

traps; gravid traps
* Resolution: Community level

* Allows determination of the primary

 Resolution: Person or vector
community level

Efficiency of
transmission

* Derived from human biting rate, | ¢ Measures potential, not actual, rate of
parasite inoculation period, transmission—includes no
mosquito to human density and parasitological information
mosquito survival * Sensitive to changes in mosquito
¢ Resolution: Community level survival and biting behaviour but may
not translate to significant change in
human incidence

 Can be useful when infection rates
are low and mosquito sampling
difficult

methods [13]. Lack of sensitivity of diagnostic detection is more acute for P. vivax infections,
which circulate at lower parasite densities hampering accurate estimates of true prevalence.
There are also other unique challenges presented by P. vivax that make characterising its trans-
mission reservoir problematic (Box 2) [14-18].

Diagnosis and treatment of clinical malaria is vital for disease control, particularly if this
can be rapidly implemented to reduce the likelihood of gametocyte production. There is also a
good public health rationale for identifying and treating ‘asymptomatic’ malaria detectable
with microscopy or RDTs, as it is increasingly recognised that this is associated with ongoing
morbidity (e.g., anaemia, increased susceptibility to bacterial infections, and cognitive func-
tion; reviewed in [8]). If the aim is malaria elimination, the contribution of low-density infec-
tions to transmission needs to be considered given that, where data are available, low-density
infections represent a significant proportion of malaria infections and can be the majority in
low-endemic areas [9,10,19,20].

While the countries that have achieved malaria elimination to date have done so largely
without specific attempts to detect and treat low-density parasitaemia, these may not be repre-
sentative of malaria typologies in higher-transmission settings. In many areas, the persistence
of malaria can occur despite high coverage of vector control measures and the availability of
effective treatment, suggesting that novel approaches are needed for both surveillance and
interventions that will accelerate the elimination process [19,21]. Furthermore, studies have
documented the failure of strategies to reduce clinical malaria incidence and transmission,
such as MSAT, when the transmission reservoir is not adequately identified and targeted with
the currently available field diagnostics [22].

It follows that the cost-effectiveness of existing or novel surveillance methods and interven-
tions in reducing malaria transmission cannot be predicted or evaluated unless the relative
contribution to transmission of (1) clinical/symptomatic malaria, (2) asymptomatic
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Table 2. Summary of currently available malaria transmission metrics in humans.

Metric

Annual blood
examination rate
(ABER)

Case, confirmed

Case, fever

Proportion of fevers
parasitaemic (PFPf)
*

Slide positivity rate
(SPR)

RDT positivity rate
(RDT-PR)

Parasite rate (PR)

Gametocyte rate
(GR)

Definition [3]

The number of people receiving a
parasitological test for malaria per unit
population per year

Malaria case (or infection) in which the
parasite has been detected in a
diagnostic test

The occurrence of fever (current or
recent) in a person

Proportion of fever cases found to be
positive for Plasmodium

Proportion of blood smears found to be
positive for Plasmodium among all blood
smears examined

Proportion of positive results among all
RDTs performed

Proportion of the population found to
carry asexual blood-stage parasites

Percentage of individuals in a defined
population in whom sexual forms of
malaria parasites have been detected

*No WHO definition is available for this term.
Abbreviations: ABER, annual blood examination rate; GR, gametocyte rate; NAAT, nucleic acid amplification test; PF Pf, proportion of fevers parasitaemic;
PR, parasite rate; RDT, rapid diagnostic test; RDT-PR, RDT positivity rate; SPR, slide positivity rate.

https://doi.org/10.1371/journal.pmed.1002452.t002

Measure of transmission

Level of diagnostic monitoring
activity

Current transmission or
incidence if data collection is
repeated or routine

Current transmission or
incidence if data collection is
repeated or routine

Current transmission or
incidence if data collection is
repeated or routine

Current transmission or
incidence if data collection is
repeated or routine

Current transmission or
incidence if data collection is
repeated or routine

Current transmission or
incidence if data collection is
repeated or routine

Potentially infectious human
population

Method
Microscopy or
RDT

Microscopy or
RDT positive

Reported or
observed fever

Microscopy;
RDT; NAAT

Microscopy

RDT

Microscopy;
RDT; NAAT

Microscopy;
NAAT

Discriminatory power

* Dependent on health-system
provision

¢ Insensitive at low transmission;
saturates at high transmission

¢ Underestimates due to system
inadequacies and poor health-
seeking behaviour

¢ Overestimates malaria infection

* Depends on diagnostic sensitivity
¢ Insensitive at low transmission

¢ Depends on ABER
* Insensitive at low transmission

* Depends on RDT sensitivity
* Insensitive at low transmission

* Depends on diagnostic sensitivity
* Insensitive at low transmission

¢ Depends on diagnostic sensitivity
* Insensitive at low transmission

parasitaemia (detectable by microscopy or RDT), and (3) low-density parasitaemia (not detect-
able by microscopy or RDT) are estimated for a particular setting. With an increasingly diverse
array of potential approaches for malaria elimination [18], but with limited human and finan-
cial resources [23], characterising the contribution of low-density parasitaemia to transmission
will help to focus elimination efforts.

Low-density parasitaemia and transmission

There are currently no field diagnostics with sufficient sensitivity to identify low-density sub-
microscopic parasitaemia, though various approaches are under evaluation for performance
and scalability (discussed in the malERA Refresh “Tools’ paper) [18]. However, even if all
infected individuals could be identified, there is a need to understand who is infectious to mos-
quitoes and for how long.

Understanding the contribution of low-density parasitaemia to the infectious reservoir for
a given malaria typology is critical to determine the diagnostic sensitivity required. It will also
affect how much effort a programme should commit to detecting and treating these infections
and when and where this effort is best deployed. As noted above, the proportion of low-density
parasitaemia increases as transmission declines [9,10,19,20,24]. Recent findings from Senegal
also suggest that the efficiency of human-to-mosquito transmission increases with decreasing
transmission intensity [25].
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Box 2. P. vivaxand P. ovale

P. vivax and P. ovale have a dormant liver stage, the hypnozoite, which is undetectable
by currently available diagnostic methods. Periodic reactivation of hypnozoites results in
repeated blood-stage infection (relapses) occurring weeks, or even years, following the
initial infection. As control efforts reduce the incidence of P. falciparum cases, P. vivax
cases can remain relatively stable and become a greater proportion of malaria cases over-
all [16]. P. vivax is refractory to traditional vector control methods: hypnozoites enable
the parasite to evade conditions unfavourable to transmission and will survive in the
host following schizonticidal anti-malarial therapy. Without new anti-hypnozoite drugs
or vaccines that could be used safely across entire populations, the P. vivax/ovale trans-
mission reservoir cannot be targeted, making elimination of these parasites challenging
in any setting.

Key advances
Relapses drive transmission
o In children in Papua New Guinea, 4 of every 5 P. vivax infections and 3 of every 5 P.

ovale infections were caused by relapses [14].

« Both primary and relapse P. vivax infections generate gametocytes, which typically
appear before clinical symptoms, and promote onward ‘silent’ transmission of the par-
asite [15].

Estimating transmission using the typical entomological measures is of limited rele-
vance when clinical disease can emerge from an individual not recently infected by a
mosquito bite.

Research needs
Detection of hypnozoites to inform targeted drug or vaccination strategies

o Access to existing anti-hypnozoite therapy needs to be expanded where possible in
order to reduce the burden of disease and minimise the risk of human-to-mosquito
transmission via relapse.

» However, several barriers to mass drug administration (MDA) for P. vivax exist. The
8-aminoquinolines primaquine and tafenoquine are the only known anti-hypnozoite
drugs. Both drugs are contraindicated in pregnancy and individuals with glucose-
6-phosphate dehydrogenase deficiency [17,18]. Even if rapid, accurate point-of-care
tests were available to exclude these individuals from treatment, a significant propor-
tion of the population (typically >10%) will remain untreated.

 Without being able to identify hypnozoites, MSAT is of no practical value in reducing
P. vivax or P. ovale transmission [14].
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o« Compared to P. falciparum, P. vivax and P. ovale present as much lower parasite densi-
ties; therefore, determining the appropriate limit of detection for new diagnostics will
be a major challenge.

Improve understanding of parasite-vector bionomics

Parasites can be transported undetected into areas where malaria has been eliminated,
leading to outbreaks and the reestablishment of transmission where conditions are
receptive. More effort needs to be directed at understanding specific parasite vector
interactions to develop targeted vector control strategies for P. vivax/ovale to reduce the
risk of mosquito-to-human transmission.

Currently, the only way to measure human infectiousness is by feeding colony-reared mos-
quitoes either on humans directly (direct feeding assay [DFA] [26,27]) or on infected human
blood via a membrane (direct membrane feeding assay [DMFA] [28]). A number of studies
have used these methods to estimate the contribution of low-density infections to malaria
transmission [29-34]. For example, studies in Burkina Faso using DMFA found that 28.7% (25
out of 87) of infectious individuals were microscopy negative, causing 17.0% of mosquito
infections [29]. Similarly, in Thailand, DFA studies found that 21% (13 out of 62) individuals
submicroscopic for either P. falciparum or P. vivax were able to infect mosquitoes [34]. These
preliminary studies suggest that surveillance systems could be modified in the future to detect
submicroscopic infections and direct transmission reduction efforts. However, understanding
the relationship between infectivity as measured in feeding assays and the infectivity in natural
transmission settings to local mosquitoes is still a major research challenge. Furthermore, few
empirical studies have quantified the proportion of the overall population that is both submi-
croscopic and infectious, particularly in low-transmission settings (i.e., less than 8 clinical
cases per week per 1,000 persons) [7]. This is needed to determine when and where treating
low-density parasitaemia is critical for interrupting transmission and the diagnostic sensitivity
required to target them. Mathematical models suggest that conventional diagnostics can detect
55% of the infectious reservoir, but with a 100-fold increase in sensitivity of detection level,
i.e., from 200 to 2 parasites/pL of blood, up to 95% of infectious individuals could be identified
[35]. This level of diagnostic sensitivity could transform our understanding of the malaria
transmission reservoir, allowing the development and delivery of better strategies to disrupt
transmission toward malaria elimination.

Detecting gametocytes

All malaria infections have the capacity to produce gametocytes. Therefore, in the context of
community chemotherapy programmes, treating any individuals who test positive for asexual
parasites is a realistic programme aim. However, research tools that measure gametocytaemia
are essential to further our understanding of transmission biology and to define the popula-
tions and individuals that drive transmission. Some studies have suggested that transmission
efficiency may increase as malaria prevalence falls due to higher gametocyte densities. As the
development of new transmission-blocking drugs and vaccines advances, understanding the
factors that drive this transmission efficiency will be needed to determine in which settings
interventions can be successfully trialled and/or implemented [25]. Although gametocytes can
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be identified using microscopy, they often exist at low densities and may circulate only tran-
siently in the blood. RDTs do not differentiate between gametocytes and asexual parasites. The
limit of detection of microscopy is 8-16 gametocytes/uL of blood [30,31]. Predictably, molecu-
lar methods are more sensitive, with 0.3 mature females/uL of blood detected with Pfs25
reverse transcription gPCR (RT-qPCR) and 1.8 mature males/uL of blood with Pfs230p RT-
qPCR [36]. As gametocyte densities are low, the increased sensitivity of molecular methods
considerably increases gametocyte detection rates. For example, a recent study in Kenya found
that Pfs25 RT-qPCR detected gametocytes in 44% of the population compared with only 2.6%
detected by microscopy [37].

While there is an overall positive association between mosquito infection rates and gameto-
cyte density, there is also evidence of infectiousness for individuals with very low gametocyte
densities [27,38]. As the majority of malaria infections are submicroscopic, even if only a small
proportion of these individuals are infectious, the contribution to the transmission reservoir is
potentially significant enough to impact elimination programmes.

Where data are available, they suggest differences between high- and low-transmission set-
tings in the gametocyte density needed for human infectivity to mosquitoes. In African popu-
lations, submicroscopic P. falciparum gametocytaemia is common, and studies in Kenya have
found that the majority of infectious children (43 out of 62) had submicroscopic gametocytae-
mia [30,31]. In contrast, in Cambodia, falciparum-infected subjects with detectable gameto-
cytes by microscopy were significantly more likely than gametocyte-negative individuals to
infect mosquitoes, and those with microscopy-detectable gametocytaemia were the source of
the majority of all mosquito infections [39].

Heterogeneity in the transmission reservoir

While data demonstrate an advance in our understanding of malaria transmission, they are
limited and suggest the infectious reservoir differs across malaria typologies [24]. Most studies
investigating human infectiousness have been conducted in high-transmission settings. There
is a particular need for data from low-transmission and near-elimination settings, where tem-
poral, spatial, and demographic heterogeneity in transmission can often be more pronounced.
Longitudinal data characterising the transmission reservoir are also needed. These would not
only allow more accurate assessments of the contributions of the different density infections
but could also inform the sequence of intervention delivery needed to reduce transmission.
Similarly, these data would inform the necessary intervention changes to most effectively tran-
sition countries from high to low transmission and ultimately elimination [40]. A key consid-
eration is to advise when malaria control measures should be reoriented following elimination
without the risk of reintroduction, particularly in the context of declining human immunity to
malaria and the potential for outbreaks.

As transmission declines and heterogeneity increases, programmes need to adjust in order
to respond to increasingly rare clinical cases. The persistence of residual transmission requires
more aggressive and/or novel strategies, and targeting these areas will be key to local elimina-
tion. Significant progress has been made in approaches to identify transmission foci using a
number of field-based, geo-spatial, and modelling approaches [41-53]. However, even where
hotspots of malaria transmission can be identified, attempts to target these foci may fail against
a background of low-level but widespread transmission [54]. Local implementation and high-
coverage control interventions linked to surveillance information will be needed to adequately
clear the reservoir at all levels of transmission.

Surveillance systems at low-transmission settings will also need to be equipped to monitor
emerging insecticide and drug resistance [55,56] that may threaten the success of existing
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interventions [56]. Longitudinal monitoring of resistance markers via sentinel surveillance
sites could prove invaluable for tracking risk of rebound or reintroduction. However, there are
currently no field-based diagnostic tests for drug resistance, and more detailed information
may be needed on local drug-resistance patterns in asymptomatic/low-density infections, par-
ticularly related to any changed infectiousness to mosquitoes.

Research agenda for measuring transmission

Improved and validated metrics of transmission would enable the optimal design of control
programmes and surveillance systems needed for malaria elimination [23]. This would include
the ability to better track progress, confirm cases and foci, and identify and contain reintro-
duction of transmission, should it occur. Validated transmission metrics are also the key out-
come to be measured in field trials evaluating the effectiveness of transmission-blocking
interventions [18] and can be used to improve mathematical models assessing potential inter-
vention combinations [7].

Measures of malaria transmission can be defined at different points in the transmission
cycle (Fig 2). Since 2011, progress has been made in understanding the advantages and limita-
tions of transmission metrics across epidemiological settings [57,58]. Further work is needed
to better quantify the correlations between metrics, standardise their application for use in
programmatic surveillance activities, and develop and validate new metrics. However, it is nec-
essary that transmission metrics are reliable and reproducible on a consistent basis and can be
assembled through existing national systems.

Entomological metrics

Between 30-40 species of Anopheles have been identified as vectors of human malaria, exhibit-
ing varying feeding behaviours and preferences, habitats, and ecologies. Within this complex-
ity, there is a need to standardise current metrics and develop more efficient sampling
techniques [57] (Table 1). Whilst developments in sampling methods have been made to eval-
uate biting densities and infection rates [59-63], human landing collection (HLC) sampling
remains the gold standard for providing epidemiologically relevant mosquito-to-human trans-
mission metrics, despite inherent risks [64,65]. Alternative technologies to HLC are being
tested that limit human exposure [66,67] and include traps with attractants that mimic a
human host [68,69].

New approaches are particularly needed in settings where vector densities are low or het-
erogeneous. For example, reexamination of vectorial capacity using mathematical modelling
to simulate settings with different baseline epidemiological and entomological characteristics
has led to new insights into the effective deployment of vector control measures [70]. Techno-
logical advances in geolocation and mapping can precisely identify vector habitats that coin-
cide with human activity and movement [71]. This information can be used to determine
potential exposure points, enabling targeted sampling in these foci of transmission risk. Other
innovative technologies include high-throughput technology, such as infrared spectrometry,
to evaluate large samples of mosquitoes for vector age, species, and infection status [72-74],
thus providing a measure of vector density and indicating the risk of malaria reintroduction.
In this regard, as with parasite drug resistance, longitudinal monitoring of insecticide resis-
tance via sentinel surveillance could prove invaluable.

Human metrics

Current epidemiological metrics of malaria transmission in humans, diagnosed via passive
and active systems, microscopy and RDTs, remain key for national malaria control
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Fig 2. Key programmatic and research metrics across the malaria parasite transmission cycle. NAAT, nucleic acid amplification
test; RDT, rapid diagnostic test.

https://doi.org/10.1371/journal.pmed.1002452.g002

programmes in tracking progress in the reduction of malaria cases and identifying outbreaks
and epidemics (Table 2). These data are complemented with large-scale surveys, such as the
Demographic and Health Surveys (DHS), the Malaria Indicator Surveys (MIS) and UNICEF
Multiple Indicator Cluster Surveys (MICS). However, as transmission declines to low
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intensity, clinical cases become rare, slide and RDT positivity rates low, and transmission pat-
terns increasingly heterogeneous.

To generate practical estimates of infection without excessive sampling, more sensitive
diagnostics and/or combinations of diagnostic approaches are needed. While the utility of
RDTs will need to be monitored in regions where deletions in the gene encoding HRP2 have
been detected in the parasite population [75,76], research is currently underway to develop
RDTs with detection thresholds corresponding to 10-20 parasites/uL or lower [77]. The
development of highly sensitive nucleic acid-based tests for parasite detection [78,79], and
hemozoin detection using nuclear magnetic resonance [80,81], is also ongoing and may be
promising. While tests using molecular methods would increase the number of infections
identified, their widespread deployment in low-transmission settings is probably not currently
cost-effective for the identification of incident infections. Additionally, in recognition of het-
erogeneity, approaches should shift from tracking national or regional progress in malaria
control towards targeted sampling and community-based surveys characterising transmission
risk in key population groups. Once elimination has been achieved, maintaining ‘zero’ trans-
mission will depend on the health system’s ability to identify any emergent malaria cases,
triggering case-based investigation to determine the origin (local or imported) and prevent
onward transmission.

Metrics to understand transmission

Recent technical advances have produced a number of transmission metrics that are suitable
for low-transmission settings (Table 3). Molecular force of infection (mFOI) and multiplicity
of infection (MOI) both use parasite genotyping methods to assess the complexity of parasite
infections [82]. mFOI can identify superinfected individuals that carry parasites from more
than 1 infection, providing a more detailed measure of transmission compared to force of
infection based on less sensitive methods (Table 2). Sequencing to determine parasite popula-
tion structure can also be used to characterise transmission by measuring the genetic related-
ness between infections in space and time. Other measures, such as allelic richness, can
indicate the level of genetic diversity, which is expected to decline as transmission declines
[83,84]. Even more refined sequencing approaches might be capable of assigning parasites as
imported or local for monitoring the origin of infections.

Antibody seroprevalence and the seroconversion rate (SCR) exploit human antibody
responses to characterise previous parasite exposure and are specific to a particular antigen
or combination of antigens [85]. Studies using enzyme-linked immunosorbant assays (ELI-
SAs) have shown serological measures correlate well with parasitological and entomological
measures in describing transmission levels and spatial and demographic risk [86,87].
Uniquely, serology, when combined with age, allows retrospective examination of exposure
history, including the effects of interventions and the absence of recent exposure in elimina-
tion settings. High-throughput platforms, such as microarray and bead-based multiplex
assays, allow screening of large numbers of potential antigenic targets with specific charac-
teristics [87,88-91]. Targets of interest include stage- or species-specific biomarkers, partic-
ularly for P. vivax [88], serological signatures of hypnozoite carriage [92], and vector-
specific antigenic targets in mosquito saliva [93,94]. The programmatic applications of
serology have yet to be fully tested, though various approaches are being evaluated, includ-
ing serological markers of incident infections [89,95-109]. Research is currently underway
to identify a variety of biomarkers indicative of recent infection that are detectable for dif-
ferent durations following parasite infection, allowing finer-scale estimation of time since
infection.
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Table 3. Advances in the development of metrics for measuring malaria transmission.

Metric Definition

Force of infection | Rate at which susceptible

individuals contract malaria

mFOI The number of new parasite
clones acquired by a host over

time

MOI The number of different
parasite strains coinfecting a

single host

Genotyping:
SNPs or amplicon
sequencing

¢ Genetic diversity, i.e.,
number of alleles in a
population

¢ Parasite signatures to map
geographical relatedness of
infection (i.e., spatial—
temporal transmission)

Antibody
seroprevalence

The percentage of seropositive
individuals in a population

SCR The rate (typically annual) by
which seronegative individuals
become seropositive upon

malaria exposure

Measure of transmission
* Probability of transmission

* Population-level
transmission intensity

* Transmission heterogeneity

¢ Population-level
transmission intensity

* Transmission heterogeneity

* Population-level
transmission intensity

* Transmission heterogeneity

* Geographical tracking of
transmission patterns

* Population-level
transmission intensity

* Population-level
transmission intensity

* Temporal changes in
transmission can be
detected from a single
sampling time point

Method
Time from birth to first malaria

episode; microscopic detection of

parasites following successful
antimalarial treatment

Cohort study >6 months with
parasite genotyping

Parasite genotyping of positive
samples

¢ Haplotypes composed of >12
informative SNPs from single
clone infections

* Haplotypic signatures from
highly variable loci

Seronegative or seropositive
defined using appropriate cutoff
points

Detection of antibodies in sera
using serological assay (IFAT,
ELISA, bead-based assays
microarray)

Discriminatory power

 Difficult to measure
« Difficult to standardise

* Depends on diagnostic
sensitivity

» Cannot differentiate
superinfections

* Highly sensitive for
monitoring changes in
malaria exposure

¢ Superinfections can be
differentiated

» Saturates at high
transmission

» Restricted by age
dependency

¢ Insensitive at low
transmission

* Highly sensitive to spatial
heterogeneity

* Highly sensitive to increases
in imported infection

* Less sensitive to changes in
seasonality

* Sensitive to changes in
malaria exposure and
spatial-temporal flow of
infection

» Standardisation of measures
needed

* Methods for analysis and
interpretation of data needed

¢ Dependent on antibody
target tested

 Saturates at high
transmission

* Sensitive at low
transmission

* Dependent on antibody
target tested

* Restricted by age
dependency

* Saturates at high
transmission

¢ Sensitive at low
transmission

* Sensitive to risk of malaria in
absence of transmission

Abbreviations: ELISA, enzyme-linked immunosorbant assay; IFAT, Immunofluorescence Antibody Test; mFOI, molecular force of infection; MOI,

multiplicity of infection; SCR, seroconversion rate.

https://doi.org/10.1371/journal.pmed.1002452.t003
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For all these metrics, however, standardisation of methods is necessary, as well as a quanti-
tative comparison to understand the relationship with existing and other new metrics. The
development of operationally suitable platforms will ultimately be required to inform real-
time or rapid response in programmatic settings. In relation to this, there needs to be a clearer
understanding of what measures are needed to better define and monitor transmission, and
what measures are useful for control programmes. New approaches to analyse metrics from
different sources to improve estimates of transmission, or confirm its interruption, are needed.
Looking to the veterinary world could be informative, where probability-based survey meth-
ods such as “freedom from infection” are used for animal disease surveillance in the food and
agriculture industry [110]. These methods are based on defining the probability that a popula-
tion is free of infection, allowing operational surveillance thresholds to be set based on the cho-
sen sampling frame and the sensitivity of available diagnostics. Adapting these strategies for
use in malaria surveillance will require tailoring the methods for specific malaria transmission
measures.

Multimetrics to characterise transmission in time and space

The increasing availability of spatial databases on parasite rate [111,112], serology, vectors
[113], malaria genetic epidemiology [114], and human population movements [115-118],
together with the increased flexibility and computational efficiency of mathematical and statis-
tical modelling methods [119,120], have led to substantial advances in the spatial-temporal
characterisation of malaria transmission intensity. To date, most of these methods have
focused on a single metric of endemicity or have relied on parameters derived from small stud-
ies. However, dynamic models are being developed that will capture the effect of human popu-
lation movements, and could incorporate multimetric ensembles to allow self-consistent
mapping across the entire spectrum of transmission settings [7]. For these technologies to
achieve the greatest impact, they will need to be linked to and used by control programmes to
inform operational decision-making in real time.

Summary

Considerable progress has been made not only in understanding the biology and epidemiology
of malaria transmission but also in the development of new tools to more accurately quantify
transmission; however, challenges remain and Box 3 summarises this Panel’s research and
development agenda. The foremost of these is an incomplete understanding of the infectious
reservoir in low-transmission and elimination settings, particularly the relative infectiousness
of (1) asymptomatic individuals and (2) susceptible vector species across a variety of malaria
typologies. The spatial and temporal heterogeneity at which these factors interact will change
as countries transition to lower transmission intensity.

The absolute and relative incidence of clinical and asymptomatic infections can vary widely
between different low-transmission settings. Transmission can occur as focal outbreaks caused
by human and vector migration. It can also persist for long periods despite aggressive control
strategies or quickly rebound after reaching zero. These scenarios are caused by varying pat-
terns of malaria risk across demographic groups, vectors, and parasite species in different
ecological settings, which may not be easily captured by simple incidence and prevalence
measures.

The application of new and/or refined metrics for routine surveillance activities or research-
specific contexts requires investigation. This needs to be done in the context of existing stan-
dard measures and the newer data collection platforms to understand the true utility. Metrics
will also need to be optimised for the quality of the healthcare system in which they will be
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Box 3. Research and development agenda

Characterising the reservoir

Objective: Determine the relative contribution to transmission of symptomatic malaria,
asymptomatic malaria detectable with microscopy or RDTs, and low-density infections
detectable by molecular methods across different malaria typologies; data from low-
transmission settings are particularly required.

Research goals

o Determine the kinetics of infectiousness of low-density parasitaemia.

o Determine the infectiousness of low-density gametocytaemia.

o Refine mosquito feeding assays (DMFA or DFA) of human infectivity to mosquitoes
and validate these against natural infectivity to local vector species.

o Determine the required sensitivity of field-based diagnostics to identify malaria infec-
tions contributing to transmission.

« Continue to develop field-based molecular and serological diagnostics with sensitivi-
ties relevant for evaluation of infectious low-density parasitaemia and
gametocytaemia.

« Investigate non-invasive diagnostics of malaria infection and infectivity.

« Develop hypnozoite diagnostics predictive of P. vivax/P. ovale relapse and subse-
quent infectivity.

« Develop cost-effective programmatic triggers and protocols for the optimal deploy-
ment of transmission-based diagnostic tests and their incorporation within surveil-
lance systems.

o Evaluate the cost-effectiveness of programmatic actions and interventions directed
by transmission-based diagnostics.

o Characterise changes in the transmission reservoir as transmission declines.

o Conduct longitudinal studies in areas of declining transmission to investigate
changes in the nature and distribution of the transmission reservoir.

« Evaluate which surveillance activities and metrics are most informative and cost-
effective for programmatic goals.

« Develop operational methods to rapidly identify antimalarial drug-resistant parasites
and insecticide-resistant vectors.

o Determine the relevance of spatial-temporal heterogeneity in the transmission reser-
voir to the acceleration of elimination.

« Identify foci of residual transmission.
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o Identify areas at risk for outbreaks and the reestablishment of malaria transmission
following local elimination.

Measuring transmission

Objective: To develop a standardised and validated ‘toolkit’ of metrics and surveillance
activities for characterising the infectious reservoir and measuring malaria transmission,
which can be applied programmatically to direct interventions, evaluate interventions,
and quantify progress towards malaria elimination.

Research goals

« Development of entomological as well as human measures and surveillance of
transmission.

« Continue to develop alternatives to HLC sampling for entomological measures of
transmission risk.

» Continued quantification of the relationships between different metrics of
transmission.

Develop validated metrics for use in low-transmission settings and in the absence of
transmission.

« Continue to develop methods for evaluating transmission risk in low-transmission
settings or in the absence of transmission.

o Evaluate multimetric combinations for the efficient integration and analysis of low-
intensity and/or heterogeneous transmission.

« Evaluate the most cost-effective and informative metrics aligned to programmatic
goals as transmission declines.

Develop validated metrics for the evaluation of new tools directed at transmission
interruption.

implemented. The same applies to the infectious reservoir. Whilst its characterisation across
different transmission settings is important, translating this information into actionable pro-
grammatic decisions will be key to achieving zero malaria transmission.
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Abstract

Since the turn of the century, a remarkable expansion has been achieved in the range and
effectiveness of products and strategies available to prevent, treat, and control malaria,
including advances in diagnostics, drugs, vaccines, and vector control. These advances
have once again put malaria elimination on the agenda. However, it is clear that even with
the means available today, malaria control and elimination pose a formidable challenge in
many settings. Thus, currently available resources must be used more effectively, and new
products and approaches likely to achieve these goals must be developed. This paper con-
siders tools (both those available and others that may be required) to achieve and maintain
malaria elimination. New diagnostics are needed to direct treatment and detect transmission
potential; new drugs and vaccines to overcome existing resistance and protect against clini-
cal and severe disease, as well as block transmission and prevent relapses; and new vector
control measures to overcome insecticide resistance and more powerfully interrupt trans-
mission. It is also essential that strategies for combining new and existing approaches are
developed for different settings to maximise their longevity and effectiveness in areas with
continuing transmission and receptivity. For areas where local elimination has been recently
achieved, understanding which measures are needed to maintain elimination is necessary
to prevent rebound and the reestablishment of transmission. This becomes increasingly
important as more countries move towards elimination.

Summary points

o Achieving malaria elimination likely requires new interventions and strategies in some
settings. In addition, the effectiveness of existing tools must be preserved and tools
deployed to counter the numerous challenges, key among which are the emergence and
spread of drug-resistant parasites and mosquitoes with resistance to vector control
measures.
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« The key research goal for diagnostics is the detection of populations with subclinical
infections and low parasite counts. Such diagnostics enable the development of effective
surveillance systems directed at malaria parasite elimination.

The availability of new transmission-blocking drugs, vaccines, and vector control prod-
ucts would accelerate elimination where there is refractoriness to currently available
interventions. New regulatory pathways and product development models are needed
to efficiently develop and assess these new interventions.

In areas endemic for Plasmodium vivax and P. ovale, the hypnozoite reservoir must be
targeted with more robust tools and strategies.

In areas of declining transmission, as cases become less frequent, the contribution to
transmission of the subclinical parasite reservoir needs to be quantified and addressed
with transmission-blocking interventions.

For vector control, addressing continuing escalation of insecticide resistance—including
through the identification of new chemical classes and longer-lasting insecticide formu-
lations—remains a priority. Changes in vector populations and behaviours must also be
addressed to restore responsiveness to existing interventions. In some areas, new para-
digms may be needed to understand how to design interventions that reduce vector
populations and receptivity to sufficiently low levels.

Policy and decision makers, faced with chronic resource limitations, insufficient surveil-
lance, spatial and temporal heterogeneity of malaria parasite transmission, and multiple
intervention choices, need improved strategies and guidance on how, where, and when
to best combine and deploy existing and new interventions to maximise their longevity
and effectiveness.

Introduction

Achieving malaria parasite elimination across all countries (i.e., malaria eradication), especially
for those with a high disease burden, likely requires new tools and strategies to complement
existing interventions [1,2]. Given the inevitable uncertainties in product development and
given that different sets of tools will be applicable in different settings, a broad and imaginative
research and development agenda needs to be pursued. The research and development agenda
presented in this paper is in support of the WHO Global Technical Strategy for malaria goals
from 2016 to 2030, and tracking the progress of this research and development (R&D) agenda
and reevaluating the research needs will be required over time [2]. In Malaria Eradication
Research Agenda (malERA) 2011, diagnostics, drugs, vaccines, and vector control were con-
sidered separately [3-6]. However, for malERA Refresh, this paper considers together the
research agenda for all existing and prospective tools to accelerate progress towards achieving
and maintaining malaria elimination. In this case, the relationships between the different
research agendas can be more easily recognised. Other papers in this malERA Refresh series
consider the related discussions regarding the implementation and combination of tools [7],
implications of insecticide and antimalarial drug resistance [8], health system and policy issues
[9], and advances in basic science [10].
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Progress on tools for malaria elimination

Based on literature reviews and panel consultations [11], the most significant advances in the
development and deployment of malaria control and elimination tools between 2011 and 2015
were identified (S1-S4 Texts). For diagnostics, advances include widespread incorporation of
P. falciparum rapid diagnostic tests (RDTs) into routine malaria case management [12], devel-
opment of highly sensitive tools for detecting subclinical infections, and development and
deployment of combined tests that differentiate P. falciparum from P. vivax [13,14]. For drugs,
advances include the deployment of hundreds of millions of artemisinin-based combination
therapy (ACT) courses [12], publication of guidelines for mass drug administration (MDA)
[15], the recommendation of low-dose primaquine for transmission interruption [16], pro-
gression of new antimalarial compound classes into clinical development [17-19], field trials
to evaluate the potential role of medicines in killing mosquitoes (endectocides) [2], and the
identification of Kelch13 as a marker for artemisinin resistance, enabling mapping of its geo-
graphic distribution [20,21]. For vaccines, advances include the Article 58 positive opinion by
the European Medicines Agency and recommendations by the World Health Organization
(WHO) on the first vaccine targeting malaria, RTS,S-AS01g (Box 1) [22-33]; revision of the
Malaria Vaccine Technology Roadmap [34]; and new vaccines that progressed to clinical trials
[35,36]. For vector control, advances include registration of 2 additional long-lasting insecti-
cide formulations for indoor residual spraying (IRS) [37,38], field trials of dual-insecticide bed
nets [39-41], development programmes for new insecticides [42-44], and publication of the
larval source management operational manual by WHO [45]. Advances have also been made
in the ‘tools for developing tools’—for example, controlled human malaria infection (CHMI)
blood-stage parasite inoculation (Box 2) [46-56]; the human blood-stage challenge model for
early-stage determination of antimalarial drug pharmacokinetics/pharmacodynamics [57];
the development of human liver chimeric mice, human erythroid chimeric mice, and dually
engrafted mice allowing replication of the entire P. falciparum life cycle [58]; and validation of
phenotypic assays for gametocyte screening to identify compounds with transmission-block-
ing activity [59]. In addition, new technologies and scientific insights are emerging [10], with
notable improvements in mapping and modelling [7,60-62].

Diagnostics research agenda
Diagnostics for malaria treatment and elimination

To direct malaria treatment, all cases should be confirmed with a diagnostic test, either RDT
or light microscopy, even in low-transmission settings [63]. Current WHO criteria for RDT
procurement recommend a false positive rate of <10% [14]. However, a test with 99% specific-
ity, when used at the elimination threshold (prevalence of parasitaemia in the community of
<0.1%), results in >90% of positive tests coming from samples with no Plasmodium parasites
[64]. In very low-transmission settings, addressing the challenge of false positive tests may
require developing algorithms such as parallel or serial confirmation with a second test.
Recently, false-negative results for P. falciparum histidine-rich protein 2 (PfHRP2)-based
RDTs have been reported from several regions, caused by pthrp2/pthrp3 gene deletions [65-
70]. Universal validity of these diagnostic tests cannot be assumed, and the WHO has issued
guidance on PfHRP2-based RDT procurement [71].

Beyond P. falciparum, improved RDTs are needed for other species. Available lactate dehy-
drogenase (LDH)-targeting RDT's are less sensitive for P. vivax compared to P. falciparum,
because P. vivax parasite densities tend to be much lower [72]. There is a paucity of informa-
tion on test performance against minor species.
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Box 1. Malaria vaccine RTS,S/A101g

In 2015, the preerythrocytic candidate vaccine RTS,S/ASO01g (RTS,S) received a positive
scientific opinion by European regulators through the Article 58 procedure. This was a
breakthrough in malaria vaccine development, identifying a regulatory pathway and
demonstrating that the large clinical trials necessary for approval could be conducted in
Africa [23-25].

o The target for RTS,S is the reduction of malaria incidence and severe disease in young
children. A 3-dose regimen was shown to reduce the number of malaria cases by half
in children 5-17 months of age during the first year following vaccination; efficacy
waned over time but was prolonged by a fourth dose [25].

Despite modest efficacy, RTS,S prevented about 1,700 cases for every 1,000 children
vaccinated in a phase III study over a 4-year period, and modelling studies predict a
considerable public health impact for RTS,S, with the greatest benefit expected in areas
with the highest malaria burden [27].

Following review of RTS,S data by the Strategic Advisory Group of Experts on Immu-
nization and the Malaria Policy Advisory Committee, in 2016 the WHO adopted rec-
ommendations for RTS,S pilot implementations in 3-5 settings involving 100,000~
200,000 children per setting (for a total of 400,000-800,000), in a staged manner to fur-
ther evaluate safety (including meningitis [26]), feasibility of delivery, and impact on
mortality.

o Phase IV studies with a primary objective of further evaluation of safety as part of the
Risk Management Plan approved by European Medicines Agency are planned to be
linked to the larger pilots, with complementary design and objectives [28,29].

Research to optimize the regimen and explore additional applications of RTS,S
o. Optimising the RTS,S dosing regimen

Additional controlled human malaria infection (CHMI) and phase IIb studies are in
progress to better define how to improve RTS,S/AS01 efficacy and how these data trans-
late to the field, respectively.

o A small study with RTS,S and an earlier adjuvant (AS02) found that fractional dos-
ing, i.e., 2 full monthly doses plus a third low-dose at 7 months, resulted in apparent
high efficacy against P. falciparum challenge (6/7 protected) [30].

o A recent CHMI study in a larger number of volunteers using RTS,S/AS01 confirmed
that a 0-, 1-, 7-month regimen that included a fractional third dose (Fx017M) was
associated with higher efficacy (86.7% [95% confidence interval [CI], 66.8%-94.6%];
26/30 protected) than the standard monthly full-dose regimen (62.5% [95% CI,
29.4%-80.1%]; 10/16 protected) against infection 3 weeks after the third dose [31].

o. Additional applications for RTS,S

Additional applications of RTS,S explored through modelling and, if indicated, evaluated
in carefully designed field studies over the next 5-year period include the following [33]:
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« Evaluating the contribution to elimination of artemisinin-resistant parasites in the
Greater Mekong Subregion, although data supporting an adult indication (dose and
regimen) would be needed [32];

» Combining RTS,S with other interventions or another malaria vaccine (mass drug
administration [MDA] or a future VIMT, respectively), with the aim of enhancing
or extending their effects;

« Combining RTS,S with seasonal malaria chemoprevention (SMC), a study of which
is in progress in Burkina Faso and Mali.

In the elimination context, a malaria diagnostic tool is needed for reactive or proactive
detection of infectious parasite reservoirs residing in those individuals with subclinical infec-
tions and/or with parasite densities lower than those reliably detected with existing RDTs and
microscopy (Fig 1) [73]. A target product profile (TPP) has been developed for a point-of-care
malaria infection detection test for rapid detection of low-density, subclinical malaria infec-
tions [64]. Provided this was sufficiently sensitive, it would potentially enable targeting of pop-
ulations harbouring reservoirs of parasite biomass with interventions interrupting
transmission.

The most efficient uses for digital health are still being explored in malaria, but integrating
diagnostic results generated from malaria case management into elimination programme sur-
veillance efforts offer a near-term opportunity to fill critical data gaps in mapping malaria
prevalence [2,7]. For example, 1 study combined a globally accessible database with mobile
phone-based imaging of RDTs to provide an objective diagnostic readout and automated col-
lection of surveillance data [74]. A similar approach in Kenya used digital RDT readers with
upload to a cloud database [75]. However, lessons learned from digital health applied to the
eradication programme for tuberculosis suggest that attaining a population-level impact are
undermined by insufficient scale, coordination, and end-user engagement [76]. These issues
are likely compounded in malaria given the higher prevalence of the disease globally.

Approaches to developing diagnostics. Several biomedical engineering approaches for
malaria parasite detection have been investigated [77], including automated image processing
[78], microfluidic systems [79], microarray chips [80], dielectrophoresis [81], and exploiting
the bioelectrical properties of blood [77]. Further development of these techniques to increase
sensitivity and specificity to detect clinically unapparent malaria parasite infections and allow
field deployment continues.

Simplified molecular methods to detect low-level P. falciparum parasitaemia for use in low-
resource settings are being developed, although improvements in throughput and cost are
required [82]. Loop-mediated isothermal amplification (LAMP) is 1 promising approach,
already validated in low-transmission settings [83] and as point-of-care detection of asymp-
tomatic low-density malaria parasite carriers [84]. Further developments include noninstru-
mented nucleic acid amplification LAMP (NINA-LAMP) [85], achieving comparable
sensitivity to P. falciparum polymerase chain reaction (PCR) detection in the field [85,86].
Another approach, using an insulated isothermal PCR (iiPCR) in a commercially available
portable device, for Plasmodium detection achieved an assay efficiency of 96.9% with a lower
detection limit of >100 copies of plasmodial DNA [87]. Nucleic acid amplification techniques
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Box 2. Tools for developing tools: Demonstrating transmission-
blocking activity

The validation of surrogate end points for transmission-blocking activity that translate
into known effects in the field is necessary for the efficient development of new interven-
tions aimed at this target.

Mosquito feeding assays
Three assays are available for assessing transmission-blocking activity:

« Direct feeding assay (DFA): allowing mosquitos to feed on parasitaemic hosts; the
most ‘physiologically relevant’ method [46,47].

o Direct membrane feeding assay (DMFA): blood samples from parasitaemic hosts are
fed to susceptible mosquitoes through an artificial membrane [48].

o Standard membrane feeding assay (SMFA): laboratory-reared mosquitoes are fed a
controlled number of cultured gametocytes from a single parasite strain combined
with uninfected human erythrocytes and serum from human volunteers or animals.
SFMA is now available as a medium throughput, reproducible, standardised assay
[49].

In the context of elimination, the relevant outcome from these assays is a reduction in
the number of infected mosquitoes.

Controlled human malaria infection (CHMI) model

Three CHMI techniques have been developed to determine the ability of drugs and vac-
cines to prevent human infection:

« Sporozoite mosquito bites: infection of human volunteers via mosquito biting [50,51].

« Sporozoite direct venous inoculation (SDVI): injection of sporozoites into human vol-
unteers [52,53].

« Induced blood-stage malaria parasite infection (IBSM): administration of Plasmo-
dium-infected red blood cells to human volunteers [54,55].

Each of these techniques has advantages and disadvantages. Both sporozoite-based mod-
els allow evaluation of preerythrocytic and blood-stage drugs and vaccines, whereas
IBSM can determine blood-stage efficacy only.

To evaluate transmission-blocking efficacy in preventing transmission from humans to
mosquitoes, CHMI can be followed by a mosquito feeding assay using blood or serum
from CHMI volunteers. Development of a regulatory pathway using mosquito feeding
assays and CHMI with relevance to transmission-blocking activity in the field is ongo-
ing. This effort would benefit from the development of new vaccines and drugs aimed
specifically at this indication [56].

can also be used for multiple pathogens in parallel, incorporating other infectious diseases
(e.g., Ebola, dengue, and typhoid), depending on the setting and target population [88].
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Fig 1. Tools for detecting and interrupting malaria transmission and their action in the malaria transmission cycle.
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Noninvasive testing

Although a noninvasive technique is highly preferred, all currently available diagnostics
require blood samples. PCR-based assays to detect Plasmodium parasites in saliva, although
unsuitable for routine diagnosis, have been successfully developed [89]. Malaria detection in
urine has been evaluated in field trials, but its sensitivity requires improvement [90]. Prelimi-
nary investigations indicate that malaria-specific volatile levels from breath samples correlate
with parasite clearance [91], and studies are ongoing. A transdermal, noninvasive, reagent-free
approach relying on the presence of iron-rich haemozoin to generate vapour nanobubbles is
currently being field tested to detect parasites in skin blood vessels [92].

Detecting gametocytes

While gametocyte detection may indicate an individual’s transmission potential, further defi-
nition is required as to the most appropriate clinical sample to collect and the relevant gameto-
cyte levels reflecting infectiousness [47]; this is complicated by a lack of correlation between
gametocyte density in the blood and infectiousness following antimalarial treatment [93]. Vali-
dation of relevant target sequences is a first step towards development of molecular methods
amenable for routine gametocyte detection. Circulating P. falciparum female and male and

P. vivax gametocytes can now be detected using quantitative nucleic acid sequence-based
amplification (QT-NASBA) or quantitative PCR (qPCR) methods with pfs25-, pfs230p-, and
pvs25-based primers, respectively [94-98].

Detecting drug resistance

Detection of Kelch-propeller polymorphisms conferring artemisinin-resistance is currently
restricted to sentinel surveillance [21], though more granular information is needed with con-
tinuing efforts to eliminate artemisinin-resistant parasites [99]. For example, a next-generation
amplicon sequencing method suitable for use in endemic countries enables high-throughput
detection of genetic mutations in 6 P. falciparum genes associated with resistance to antimalar-
ial drugs, including artemisinins, chloroquine, and sulfadoxine-pyrimethamine [100]. For
detecting P. falciparum single nucleotide polymorphisms (SNPs) associated with antifolate
drug resistance, the ligase detection reaction fluorescent microsphere (LDR-FM) assay has
been validated in clinical trials in Uganda [101]. As noted elsewhere in the malERA Refresh
series [8], continued research on identifying markers of resistance to the other antimalarial
drugs in current use (e.g., lumefantrine and piperaquine) is critical, as tools are needed to
detect and manage drug resistance inevitable in elimination efforts [102,103].

Detecting hypnozoites

Hypnozoites residing in the human host is one tactic used by P. vivax and P. ovale to sustain
the parasite reservoir between transmission seasons and produce multiple clinical relapses
over prolonged periods, each with the potential to maintain transmission [104]. Detecting

P. vivax/P. ovale hypnozoites, however, is problematic because of their low density, metabolic
inactivity, and sequestration within the liver. Biomarkers that detect hypnozoites would be
breakthrough tools in both case management diagnostics and elimination surveillance for

P. vivax and P. ovale infections.

Glucose-6-phosphate dehydrogenase (G6PD) testing

An affordable, easy-to-use, rapid, point-of-care, semiquantitative diagnostic test is needed to
identify G6PD-deficient individuals at risk of haemolysis with use of 8-aminoquinolones (i.e.,
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primaquine or tafenoquine) to prevent P. vivax relapses. Although several tests are available
[105], further refinement is needed to support greater access to these medicines. Single admin-
istration of low-dose (0.25 mg/kg) primaquine as a gametocytocidal agent is recommended
after treatment for P. falciparum malaria [106], but there is still a need for more data on the
optimal dose and reassurance of safety in G6PD-deficient individuals and larger populations,
if used in MDA, for example [107].

Pregnancy testing

Pregnant women are excluded from receiving certain drugs or interventions, and rapid, low-
cost, low-complexity, point-of-use pregnancy tests are needed, particularly for populations
receiving MDA drugs with contraindications for use during pregnancy.

Challenges

Diagnostics are needed to direct treatment, support surveillance, and identify transmission
reservoirs [73] and for continued progress in the development and evaluation of other tools
for elimination, e.g., in settings with low-density parasitaemia and low transmission and for
interventions targeting hypnozoites/prevention of relapse. The relevance of low-density para-
sitaemia to transmission requires further investigation to enable the design of diagnostics
appropriate for these needs. Longer term, development of noninvasive assays, and field assays
for detecting drug-resistant parasites should be pursued. Detecting hypnozoites remains a
more profound challenge, although proteomics and metabolomics are being explored [108].

Drug research agenda
Drugs for malaria treatment, prevention, and transmission interruption

A strong portfolio of combination medicines with different or competing resistance mecha-
nisms is required to combat resistance. It is now possible to tune the development program to
advance drugs that have high barriers to resistance development and a low potential for cross
resistance with other agents. In addition to classic inhibitory experiments, the propensity of
drugs to induce ring-stage dormancy, characteristic of artemisinin resistance, must also be
evaluated [109].

Single encounter radical cure and prophylaxis (SERCaP). Proposed in malERA 2011,
SERCaP remains a priority [5]. Radical cure means clearance of all asexual blood-stage forms,
mature gametocytes, and P. vivax/P. ovale hypnozoites (Fig 1). Combination therapies of new
chemical entities (NCEs) that are targeted to ‘single encounter, radical cure are now in phase
II clinical trials, with potential regulatory submission dates circa 2021 (S1 Table) [17].

The post-treatment prophylactic component of the SERCaP will come from the long half-
life of the active pharmaceutical ingredients. Malaria parasite elimination will require new gen-
erations of single-encounter chemoprotection, to protect migrating populations and protect
against epidemics in the later stages of elimination. These products would include molecules
that provide chemoprotection by targeting the preerythrocytic stages (see TCP-4 specific attri-
butes in [110]).

Reducing duration of dosing regimens, ideally to a single dose, increases adherence, be it
for prevention or treatment [8]. Although better adherence improves effectiveness, it must be
achieved without significantly increasing the risk of selection for drug-resistant parasites as a
result of creating long periods of subtherapeutic drug levels. As a country or area approaches
elimination, the remaining parasites are likely to be those most resistant to treatment, and
drug classes with a low propensity to select for parasite resistance should be prioritised [111,
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112]. The temptation to combine new drugs with old drugs with preexisting resistance, whilst
simpler from a regulatory perspective, must be avoided to prevent novel agents being exposed
as functional monotherapies when used against strains resistant to the older partner drug.

Severe malaria. Intravenous and intramuscular artesunate are currently the most effective
and well-tolerated treatments for severe malaria [113,114], with rectal artesunate recom-
mended for pre-referral treatment of children who cannot quickly access hospital care [106].
The potential spread of artemisinin resistance threatens the effectiveness of artesunate for
treatment of severe malaria. Thus, new compounds with rapid activity against asexual blood
stage parasites, suitable for parenteral administration, are needed for this critical indication
(see TCP-1 specific attributes in [110]). The decline in the incidence of severe malaria in adults
will require alternative development approaches, including the development of surrogate end
points [115], as not enough patients will be available for large mortality studies [116]. How-
ever, sufficient safety data in adults would still be required for a phase III trial in African chil-
dren with severe malaria.

Interrupting transmission. Drugs with activity against gametocytes in humans or that
impair sporogony in the mosquito could help to interrupt transmission (Fig 1) [117]. While
low-dose (0.25 mg/kg single dose) primaquine is currently recommended as a gametocytocidal
following ACT treatment for P. falciparum malaria in areas of low transmission [16,118,119],
NCE combination therapies with both therapeutic and transmission-blocking activity would
simplify drug administration. High-throughput screening and clinical evaluation of com-
pounds with transmission-blocking activity are now possible (Box 2) [59,120-125] and have
yielded new leads, including more than a dozen from the Medicines for Malaria Venture
toolbox with activity in the standard membrane feeding assay [126].

Global antimalarial drug development portfolio. There are at least 15 active projects in
preclinical development or phase I or II clinical trials (S1 Table) [17]. A range of new chemo-
types targeting new parasite pathways are available, with antimalarial drug development accel-
erated using CHMI models (Box 2). Two pairs of NCE combinations are in phase II clinical
studies: the long-lasting synthetic endoperoxide artefenomel (OZ439) combined with the
next-generation 4-aminoquinoline, ferroquine; and the imidazolopiperazine KAF156 com-
bined with a new once-per-day lumefantrine formulation. This latter combination is also
being explored as a 3-day regimen for use as a frontline agent in areas with ACT resistance.
Single-dose effectiveness with an appropriate safety profile may require triple combination
therapy. Notably, KAF156, DSM265, and MM V390048 have activity against P. falciparum liver
stages and could be given as a single-dose treatment or once weekly for chemoprotection (S1
Table) [127]. TPPs and target candidate profiles with minimal essential and ideal attributes for
single-encounter chemoprotection have been published [110].

Antihypnozoite drugs

In areas of high transmission, such as Papua New Guinea, relapses cause approximately 4 of
every 5 P. vivax infections [128]. Modelling suggests that for rapidly relapsing tropical P. vivax
strains, effective relapse prevention has the potential to significantly reduce transmission [104].
In areas of seasonal transmission, relapses allow parasites to rapidly reestablish transmission
once vector populations recover [129]. The 8-aminoquinoline primaquine is the only antirelapse
therapy currently available (aside from chloroquine, to which there is extensive resistance), but
treatment courses are 7-14 days, and poor adherence undermines effectiveness [130]. Tafeno-
quine is a candidate single-dose 8-aminoquinoline, showing high antirelapse efficacy in P. vivax
infections when given with chloroquine [18]. Phase III clinical trials were completed in 2016,
with regulatory submission anticipated in 2017. The impact of tafenoquine on transmission
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remains to be evaluated in post-registration CHMI and field trials. G6PD-deficient individuals
cannot be given standard doses of 8-aminoquinolones; in addition, 8-aminoquinolones are con-
sidered contraindicated during pregnancy and lactation. As such, new antihypnozoite drug clas-
ses without these contraindications are needed. Discovery should be enhanced in the next 5
years through screening campaigns against P. vivax liver stages using stable human cell systems
[131,132]. Additionally, humanised mouse models are facilitating drug development against this
life cycle stage that thus far has been refractory to study [133].

Seasonal malaria chemoprevention (SMC)

In areas where malaria is seasonal, providing SMC by monthly treatment with long-lasting
antimalarial drugs greatly reduces malaria burden in children under 5 years of age [134,135].
Modelling studies indicate the potential for reducing transmission to very low levels if SMC is
combined with long-lasting insecticidal nets (LLINs) at 80% coverage and expanded to chil-
dren up to 10 years of age [136]. Sulfadoxine-pyrimethamine + amodiaquine (SPAQ) is used
for SMC in the Sahel; drug resistance prevents SPAQ use in eastern and southern Africa,

and there are concerns that resistance may spread to the Sahel. Thus, alternative drugs are
required, ideally with simplified dosing regimens.

Endectocides

Endectocides are an alternative approach to malaria control whereby humans and/or livestock
are given agents with insecticidal activity, resulting in reduced survival of the vector upon
blood feeding and impairment of malaria parasite transmission [137]. Modelling studies sug-
gest that the endectocide ivermectin could help achieve transmission interruption as an addi-
tional intervention in settings where mass treatment strategies with ACT's alone would be
insufficient to accomplish elimination [138]. A research agenda was proposed in 2013 outlin-
ing the path for ivermectin use in malaria [139], with a number of studies in different settings
underway. A WHO expert group recently examined this concept, with findings anticipated in
2017. The antimosquito properties of veterinary and other candidate endectocides are also
being explored.

Novel formulations

An interesting possibility is the application of nanomilling and related technologies to develop
long-acting drug formulations, which are being investigated for long-term HIV preexposure
prophylaxis and in combination with contraception in so-called multipurpose prevention
technologies (MPTs) [140-143]. Such long-acting drug formulations could potentially allow
chemoprotection over several months from a single injection. Application to new generations
of transmission-blocking molecules or endectocides could provide tools that reduce or prevent
transmission over an entire transmission season.

Challenges

Attrition rates in antimalarial drug development are comparable with those in other infectious
diseases [126]. Thus, discovery momentum needs to be maintained at high levels if new drugs
are to reach licensure. A major challenge in registering NCEs for malaria is assembling the
substantial clinical safety data required for regulatory approval, particularly in the key target
populations of infants and pregnant women. Thus, reproductive safety should be evaluated
early in preclinical development to prioritise investment in NCEs with appropriate preclinical
profiles.
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With the introduction of NCEs during the next 5 years, pharmacovigilance needs strength-
ening in malaria-endemic areas. This is also a prerequisite for safe deployment of current
ACTs and next-generation treatments during mass treatment programmes targeted at popula-
tions that include individuals with subclinical malaria or who are infection free.

In the next 5-10 years, there is a need to enrich the early-stage portfolio with new antihyp-
nozoite drugs beyond the current 8-aminoquinolones. Cell biology and the animal models
supporting drug discovery for new antihypnozoite agents have progressed significantly but are
still not amenable to high-throughput screening programmes [144,145]. Clinical trials for
relapse prevention take 6-12 months, much longer than treatment trials. Additionally, relapses
can be caused by hypnozoites that are homologous or heterologous to the initial infection and
cannot, therefore, be distinguished from recrudescence or reinfection [146-148], except by the
physical removal of treated patients from transmission areas, e.g., repatriated soldiers and
travellers.

Although NCEs active against artemisinin-resistant isolates are in development, better
strategies are needed to deploy drugs to delay or prevent the emergence of drug resistance,
such as measures to tackle counterfeiting or manufacturing of poor-quality medicines, drug
sequencing, multiple firstline therapies, and exploiting competing resistance mechanisms, as
discussed elsewhere in the malERA Refresh series [8].

Vaccine research agenda

The Malaria Vaccines Technology Roadmap was updated in 2013 [34], with the goal of devel-
oping by 2030 vaccines for P. falciparum and P. vivax that have a protective efficacy of at least
75% against clinical malaria and/or reduce transmission of the parasite. The roadmap outlines
key priorities in research, vaccine development, key capacities, policy, and commercialisation.
The research issues in malaria vaccines are discussed below, but key to their success will be
ensuring an efficient and cost-effective distribution system and redirection of the health sys-
tem from delivering malaria treatment to prevention and transmission interruption [9].

Vaccines to prevent clinical malaria and interrupt transmission

A preerythrocytic vaccine to interrupt malaria transmission (PE-VIMT) that completely pre-
vents liver-stage infection for a significant duration (e.g., at least 1 transmission season) would
prevent parasitaemia and gametocyte generation and therefore interrupt onward transmission
(Fig 1). Although RTS,S is a preerythrocytic vaccine, demonstrating modest efficacy in pre-
venting clinical malaria, prevention of infection and transmission were not evaluated in the
late-stage clinical trials (Box 1). More recently, a delayed fractional dose regimen of RTS,S
with improved efficacy against a parasite transmission (mosquito-to-human) end point may
be considered for transmission-blocking potential (Box 1) [31]. Several next-generation preer-
ythrocytic candidates are in clinical development, including multistage (including asexual
blood-stage and/or sexual/sporogonic/mosquito-stage targets) combinations and prime-boost
strategies, as well as irradiated or genetically attenuated sporozoites (S2 Table) [35,149]. Future
directions need to ensure a widely acceptable route of administration, optimised dose regi-
mens, and lower inoculum sizes.

Blood-stage vaccines are an alternative and complementary approach to PE-VIMT. Blood-
stage vaccines that interrupt malaria parasite transmission (BS-VIMTs) by efficiently clearing
blood-stage infections would limit gametocyte densities and the duration that a person is infec-
tious, thus reducing human-to-mosquito malaria parasite transmission (Fig 1). Several prom-
ising P. falciparum vaccine candidates are in clinical development [150], including the
unstructured peptide P27A, the well-studied PfRH5, and the 2 placental malaria vaccine
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candidates PAMVAC and PRIMVAC (S2 Table). Innovative new concepts in next-generation
malaria vaccine protein subunit design are being explored to develop highly effective multi-
component/multistage/multiantigen formulations [151].

Vaccines that only interrupt malaria parasite transmission

Sexual-sporogonic-mosquito-stage vaccines to interrupt transmission (SSM-VIMT) inhibit
parasite transmission from human to mosquito, through reducing gametocytes’ ability to
infect mosquitoes or by interfering with parasite development (sporogony) within the mos-
quito (Fig 1). As the potential benefit to the recipient is both delayed and indirect, the PATH
Malaria Vaccine Initiative and partners are exploring potential regulatory and policy
approaches with the United States Food and Drug Administration and WHO, respectively
[152,153]. Progress has been made, with a design proposed for a phase III study [154]. The
Pfs25 antigen is expressed on the surface of zygotes and ookinetes in the mosquito midgut,
and various attempts to improve immunogenicity and transmission-blocking activity have
been undertaken (S2 Table) [36,153]. The most clinically advanced is Pfs25-EPA (a detoxified
form of exotoxin A from Pseudomonas aeruginosa) conjugate [155]. Most recently, Pfs25 has
been fused with IMX313, a molecular adjuvant, and expressed in chimpanzee adenovirus 63
(ChAd63) and Modified Vaccinia Virus Ankara (MVA) viral vectors and as a secreted protein
nanoparticle [156]. The research agenda has broadened to include other SSM-VIMT antigens,
including Pfs230 and Pfs48/45 (S2 Table).

Vaccines for P. vivax/P. ovale

A vaccine that could prevent P. vivax/P. ovale infection and hypnozoite formation, target hyp-
nozoites, or prevent disease, thereby interrupting transmission and draining the hypnozoite
reservoir, would be a significant step for accelerating malaria elimination (Fig 1). P. vivax is
now included in the Malaria Vaccine Technology Roadmap strategic goals [34]. While basic
research in P. vivax has increased in recent years, no vaccine candidate has progressed past
early human studies (S3 Table) [35,36]. Three preerythrocytic vaccines have reached clinical
trials [157-159]. A blood-stage vaccine targeting the Duffy-binding protein region II has pro-
gressed to early clinical trials [160], though combination with other blood-stage antigens is
likely necessary to achieve high growth inhibition. The Pvs25 antigen is also being investigated
as an SSM-VIMT. The recent development of P. vivax CHMI systems allows evaluation of vac-
cine efficacy [157,161]. Also, publication of the P. ovale and P. malariae genomes facilitates
antigen discovery for these parasites [162].

Adjuvants, delivery platforms, and desired human immune responses

Most (but not all) malaria vaccines in development are based on Plasmodium protein subunits
and have shown limited immunogenicity in humans. Suitable adjuvants and delivery platforms
are therefore needed to elicit the desired immune response and induce significant protection
from infection and disease without unacceptable collateral inflammation [163]. There are few
adjuvants licensed for human use and there is a need to (1) better define the desired human
immune response; (2) facilitate access to adjuvants in development and ensure downstream
availability, affordability, and acceptability; (3) develop more specific targeted adjuvants that
boost desired immune responses while maintaining acceptable safety; and (4) match individual
adjuvants to individual vaccine candidates depending on the postulated mechanism of action
while maintaining compatibility for combination vaccines.
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Prophylactic biologics

Monoclonal antibodies are another potential tool. Recently, the major barriers of cost are
being overcome through improvements in manufacturing and high-expressing cell lines [164].
A recent report estimated that the cost of goods for monoclonal antibodies had reduced
10-fold, from thousands of dollars per gram to around $100 per gram, with the costs of devel-
oping these agents comparable to other therapeutic drugs and vaccines [165]. Additionally, the
volume and frequency of administration of monoclonal antibodies have been reduced by
improvements in potency and pharmacokinetics [166]. There has been a significant increase
in the number of validated vaccine targets, and now monoclonal antibodies can be studied
early in clinical development for their ability to provide immediate protection in CHMI mod-
els, either singly or in combination [167]. Antibodies are less prone to the off-target safety and
toxicity issues that often plague small molecule development and thus offer significant advan-
tages for deployment in vulnerable populations, including the immunocompromised and
pregnant women. In the context of elimination, monoclonal antibodies with suitable pharma-
cokinetics/pharmacodynamics could represent an alternative to active immunisation by
VIMTs or transmission-blocking drugs. As with any tool, prophylactic biologicals will need to
be designed to meet the needs and capabilities in target settings.

Challenges

To achieve malaria elimination, vaccines would ideally be able to prevent infection by all 5 spe-
cies of human malaria parasites. While humans are the major (if not only) reservoir for 4 of 5
Plasmodium ssp., zoonotic P. knowlesi presents a unique challenge for elimination given con-
tinuous sylvatic transmission [168]. If a ‘Plasmodium’ vaccine targeting all human-infecting
species is not feasible, then vaccines are required against individual species. It remains to be
determined whether experience gained in the development of P. falciparum vaccines can, in
fact, inform approaches to other malaria species or whether new strategies are required.

Similar to drugs used in MDA, vaccines for mass inoculation need to be safe for use in preg-
nant women and children. Demonstrating safety across the target population is particularly
important for vaccines that only prevent transmission and have an indirect benefit to the
recipient.

For malaria vaccine candidates, there is limited information on immune correlates that
may predict efficacy in the chosen indication. Antigenic diversity of many of the malaria vac-
cine targets [169,170] adds additional complexity to predicting efficacy and enables parasites
to evade host immune responses, potentially leading to vaccine escape mutants [171,172].

There is also incomplete understanding of the development and maintenance of either nat-
urally acquired or vaccine-induced human immunity to Plasmodium. A predictable ‘age shift’
in peak incidence of malaria associated with vaccines with modest and/or waning efficacy in
children who have not acquired full natural immunity must be anticipated and appropriately
managed [173]. The challenge of maintaining individual and population-based (herd) immu-
nity may increase as circulating parasite prevalence declines during the later stages of elimina-
tion. Thus, rationally designing vaccines that induce long-lasting immunity in semi-immune
adults and provide broad cross strain protection presents formidable challenges.

Finally, as with drugs, parasite genetic diversity and rich population structures, particularly
in high-transmission settings, indicate the potential for differential parasite-specific efficacy
and selection of resistant Plasmodium. The former has been observed in vaccine field studies,
including a recent genetic analysis associated with a large phase III trial of RTS,S/AS01 [170].
However, there are no data regarding whether implementing malaria vaccination induces par-
asite resistance in the whole population of infected individuals.
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Vector control research agenda
Insecticide-based interventions

LLINs are currently the single most important malaria control intervention, responsible for
approximately 68% of malaria cases averted in Africa [174]. However, emerging resistance to
insecticides among Anopheles mosquitoes threatens to reverse these gains [175,176]. New
insecticides with different modes of action are urgently needed to deter resistance develop-
ment. In response, ‘Innovation to Impact’ was initiated in 2013 with an aim to transform the
process for developing and delivering life-saving vector control products for diseases caused
by vector-borne pathogens. More than 30 different stakeholder groups are involved, including
industry, global evaluation and regulatory bodies, procurers, local and national representa-
tives, and donors [42,43].

Twelve insecticide products are currently available for vector control, confined to 4 chemi-
cal classes (pyrethroids, organochlorines, organophosphates, and carbamates), although only
pyrethroids are widely used for LLINs. Several combination LLINs consisting of different
insecticide classes or incorporating the synergist piperonyl butoxide are in late-stage develop-
ment (Table 1) [39-41,177-181]. Similar to LLINSs, long-lasting insecticide-treated hammocks
could be effective in remote areas; however, the lifespan of these interventions has a significant
impact on cost-effectiveness, and exploration of technologies to increase durability is needed
[182].

After screening around 4 million compounds, 3 new insecticides have progressed to devel-
opment, with registration typically taking 5-7 years [44,178]. These new insecticides are pri-
marily pyrethroid alternatives for use in LLINs but also would be expected to have use in IRS.
For IRS, 2 long-lasting formulations of existing compounds have become available: a microen-
capsulated formulation of the organophosphate insecticide pirimiphos methyl in 2012 [37]
and a polymer-enhanced suspension of deltamethrin in 2013 [38]. The Next Generation IRS
project is a market intervention to accelerate uptake and increase use of long-lasting IRS prod-
ucts [183]. Additional long-lasting insecticides suitable for IRS are in development (Table 1).

Table 1. Insecticides for indoor residual spraying (IRS) under World Health Organization Pesticide Evaluation Scheme (WHOPES) evaluation and
long-lasting insecticidal nets (LLINS) in late-stage development [39-41,177,178]*.

Application Product Insecticide(s)
IRS Phantom Chlorfenapyr (phase Ill)
SumiShield Clothianidin (phase II)
Fludora Fusion Deltamethrin + clothianidin (phase I)
LLINs DawaPlus 2.0 Deltamethrin coated on polyester
LifeNet Deltamethrin incorporated into polypropylene
MiraNet Alpha-cypermethrin incorporated into polyethylene
Panda Net 2.0 Deltamethrin incorporated into polyethylene
Yahe Deltamethrin coated on polyester
LLINs + PBO Olyset Plus Permethrin + PBO incorporated into polyethylene
PermaNet 3.0 Deltamethrin coated on polyester side panels; deltamethrin + PBO incorporated into polyethylene (roof)
Veeralin Alpha-cypermethrin and PBO incorporated into polyethylene
Combination LLINs Olyset Duo Pyriproxyfen and permethrin incorporated into polyethylene
Interceptor G2 Alpha-cypermethrin + chlorfenapyr coated on polyester

*March/April 2016.
PBO, piperonyl butoxide

https://doi.org/10.1371/journal.pmed.1002455.t001

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002455 November 30, 2017 15/35



@PLOS ’ MEDICINE

New ways of using insecticides require more extensive field evaluation, e.g., technological
advances for improving spraying techniques [184], timing of insecticide deployment to coin-
cide with seasonal transmission, slow-release polymer-based wall linings [185,186], insecti-
cide-treated eave tubes or eave ‘bricks’ combined with house screening, and electrostatic
coatings to enhance insecticide bioavailability [187].

Vector behaviour and outdoor targeting

Greater understanding of vector behaviour is needed, including the behavioural adaptations of
vectors in response to control measures, such as changes in biting times, resting locations, and
rates of zoophagy [188-194]. Improved targeting of specific vector behaviours—particularly
sugar feeding, oviposition, mating, dry-season survival, and swarming behaviour—and zoo-
prophylaxis are generating novel approaches to vector control, with potential application
across transmission settings [195,196].

Long-standing evidence that malaria parasite transmission to humans occurs outdoors in
Southeast Asia and South America and increasing evidence of outdoor transmission in sub-
Saharan Africa [3,197-202] suggest a specific need for interventions that target mosquitoes
outside dwellings. Attractants/traps are a potential new area of mosquito control that can be
applied both indoors and outdoors. These include attractive toxic sugar baits [203,204] and
sound traps, which lure male mosquitoes by broadcasting sounds similar to the wingbeats of
female mosquitoes [195,203]. All major malaria parasite vectors in Africa mate in swarms
[206], which are easily found and recognised, appear to be stable over time, and exist in a
defined space [195]. This facilitates close targeting either with insecticides or traps [195]. Spa-
tial repellents are another approach, releasing into the air volatile chemicals that prevent
human-vector contact within the treated space (indoor or outdoor). Guidelines for efficacy
testing are now available [205,207], and evaluation in outdoor settings is needed [208,209].

Environmental management and larval source management

Environmental management, such as improved housing and water management, can be highly
effective in specific epidemiological and environmental settings [210]. The best of these envi-
ronmental management approaches require further investigation in tropical climates and
resource-poor settings to establish their epidemiological impact in these settings [210,211].
Mosquito larval source management is the management of water bodies that are potential lar-
val habitats to prevent immature mosquitoes developing into adults, either by environmental
management or application of larvicides [45]. Larval source management has been highly
effective in certain situations [211], but as this is a resource-intensive activity, better definition
of the appropriate requirements and approaches across a wider range of settings is needed.

Genetic approaches

There are 2 main strategies for genetically modifying mosquito populations: (1) population
suppression, whereby mosquitoes are modified in such a way that upon mating with the wild
type the resulting progeny are either sterile or dysfunctional, and (2) population alteration or
replacement, in which the mosquitoes are modified in such a way that upon mating with the
wild type, the resulting progeny are rendered refractory to malaria parasite infection. Genetic
approaches now appear operationally feasible given recent advances in molecular biology,
such as the efficient genome-editing techniques based on CRISPR/Cas9 and other approaches
[10,212,213].

The sterile insect technique was the first attempt at genetic population suppression,
whereby large numbers of irradiated sterile males are released with the hope that females mate
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unsuccessfully [214]. A more recent development is the release of insects carrying a dominant
lethality, with the progeny of females mating with genetically modified males inheriting a
lethal gene [215,216].

Gene drive systems exploit ‘homing’ endonucleases. These induce the lateral transfer of an
intervening DNA sequence to a homologous allele that lacks that sequence, thereby changing a
heterozygote into a homozygote. Conventional homing endonucleases have been reengineered
to recognise mosquito genes [217] and can rapidly increase the frequency of desirable traits in
a mosquito population [218]. Technical feasibility has been demonstrated for a CRISPR/Cas9--
based gene drive system with the potential to reduce mosquito populations [219] or make
them less able to transmit malaria parasites [220].

There is also the potential for symbiont-mediated biocontrol in malaria Anopheles mos-
quito populations, as suggested by recent successes achieved against Aedes aegypti (e.g., Wolba-
chia-mediated pathogen interference for dengue control). A further step is paratransgenesis,
whereby a vector symbiont (virus, bacteria, or fungi) is engineered to express ‘effector’ mole-
cules within the vector that are deleterious to the pathogen. Genetic modification of symbionts
is easier than it is for mosquitoes and is independent of mosquito species, providing the symbi-
ont can survive and colonise the host [221], and laboratory studies have shown promise [222].

There are environmental uncertainties associated with widespread distribution of technolo-
gies involving genetic manipulation of pathogens, vectors, or their symbionts [10,212]. Phased
testing starting at a small scale is recommended, though the parameters for ecological risk
assessment are not well understood.

Challenges

The development of new insecticides will need to outpace the expansion of insecticide-resis-
tant alleles in mosquito populations, and new products will need to be deployed to effectively
combat behavioural resistance [8]. The imperfect correlation between entomological indica-
tors and disease incidence complicates the accurate assessment of new vector control tools.
Randomised controlled trials are expensive and time consuming, and new pathways should be
explored for generating evidence for large-scale implementation of new interventions. Increas-
ing fine-scale heterogeneity, in human and vector subpopulations and in geographic space,
means that no single set of interventions will be effective across large areas or districts. Not-
withstanding resource availability, the challenge is to understand which combinations of vec-
tor control measures are appropriate in different settings and how their effects can be
augmented with other interventions (e.g., endectocides, transmission-blocking drugs, and vac-
cines) [7]. Targeting mosquito dormancy remains a challenge in large part because of the pau-
city of mechanistic evidence by which vectors persist during the dry-season (e.g., diapause
[aestivation] and long-distance migration) [223]. Finally, it is important to note that there are
very few trained entomologists in national malaria control programs, especially at the district
level. To develop and implement vector-targeted interventions, greater entomology capacity
building is required.

Conclusions

There are overarching areas in which greater knowledge is required to understand the utility
of current interventions and define which products and strategies might be required going for-
ward. Novel tools may allow further investigation of knowledge gaps, and some may be bridge-
able (Table 2). The R&D agenda for tools for elimination is summarised in Box 3.

Transmission can remain high even with high coverage of good-quality case management
and vector control. Thus, products and strategies directed specifically at accelerating
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Table 2. Knowledge gaps and tools to potentially bridge the gaps.

Knowledge gaps Tools to potentially bridge the gaps
High-to-low transmission

* Why do transmission rates remain high even » Methods that are protective against infection and
when case management and vector control have interrupt transmission (Fig 1).
high coverage?

* At which point should interventions specifically * Robust mathematical and laboratory models of
directed at reducing transmission be introduced? | transmission and impact of combination interventions.

¢ What is the contribution of the subclinical ¢ Sensitive point-of-care tests to detect transmission
reservoir to transmission in high-transmission reservoirs and enable evaluation of interventions.
settings?
* In vector control, which factors drive changes in | ® Prevention or control measures effective against all
transmitting species? species.

Low-to-zero transmission
* How best can the remaining sources of * Affordable, rapid, sensitive screening techniques to
transmission be identified? identify populations generating infectious

gametocytes.

* What is the impact of nonhuman malaria parasite | ® Vector control measures with efficacy independent of
transmission on the effectiveness of vector nonhuman transmission.
control?
* How can transmission be measured when it is low | * See Malaria Eradication Research Agenda
or zero? (malERA) Refresh ‘Characterising the reservoir and

measuring transmission’ [73].
* How can approaches to false-positive diagnostic | * Development of highly sensitive and specific tests,

tests be addressed? along with combination testing algorithm/protocols to
identify false positives.

* How can the P. vivax/P. ovale hypnozoite * Development of hypnozoite diagnostics, and/or

reservoir be identified and targeted? antihypnozoite drugs/vaccines that are safe enough
for use in population-based administration.

* How can heterogeneity in transmission be * Interventions that are safe and cost-effective enough

managed? to be used across wider populations.

Maintaining zero transmission

* How can the efficacy of tools be measured when | e Development of validated surrogate end points of
transmission is zero? efficacy.

* What are the drivers of epidemic malaria? * Modification of vector populations to decrease
epidemic potential; tools for epidemic response,
including for nonimmune populations.

https://doi.org/10.1371/journal.pmed.1002455.1002

elimination by targeting transmission are needed. Interventions may only achieve transmis-
sion reduction when deployed in certain populations or settings. Conversely, some popula-
tions and settings may require specific measures for transmission reduction, for example,
pregnant women and infants, migrant workers, subclinical parasitaemia, or addressing out-
door transmission. The availability of new interventions is expanding, but developing algo-
rithms for their rational combination and deployment in packages to decrease transmission is
a key research need that requires modelling support [7]. Cost-effectiveness is an important
determinant of whether particular interventions are adopted in public health programmes [9].
New products and strategies are needed to overcome parasite drug resistance and vector
resistance to insecticides [8]. Prevalence of vaccine escape mutants has been highlighted as a
potential issue if vaccines become widely used [170-172]. Thus, product development must
continue, and strategies for phased replacement are needed as effectiveness wanes. New prod-
uct discovery and development requires investment in basic science [10], the alignment of
regulatory structures to expedite product registration, and continued investment in pharma-
covigilance and surveillance. Funding organisations and malaria programmes also need to be
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Box 3. Research and development agenda for tools for elimination
Diagnostics

Detecting transmission potential

 Malaria diagnostic tools best suited for detection of low-density, subclinical infections
o Assay for detecting infectious gametocytes

o P.vivax/P. ovale hypnozoite detection methods

« Noninvasive diagnostic tests

Directing treatment

» Stable, valid, specific, and sensitive rapid diagnostic tests (RDTs) that do not depend
on histidine-rich protein 2 (HRP2)

o Detection of drug-resistant parasites

« RDTs that detect and differentiate all relevant human Plasmodium ssp. pathogens
 Multiplexed point-of-care tests for acute febrile illness

Special populations

o Affordable, simple, and accurate point-of-care tests for glucose-6-phosphate dehydro-
genase (G6PD)-deficient individuals and pregnant women

Drugs

Drugs for prevention and treatment

o Drugs that overcome resistance to existing drugs, particularly artemisinin resistance
« A suite of combination drugs with different or competing resistance profiles

o New drugs for prophylaxis

« Simplifying therapy, with the potential objective of a single encounter radical cure and
prophylaxis (SERCaP)

» New regimens for use in seasonal malaria chemoprevention (SMC) outside the Sahel
and to potentially replace sulfadoxine-pyrimethamine + amodiaquine (SPAQ)

Drugs to interrupt transmission

« Investigation of the impact of low-dose primaquine in different settings

« New drugs with transmission-blocking potential

 Drug combinations incorporating both asexual and transmission-blocking activity

« Evaluate the impact of transmission-blocking drugs on pathogen resistance develop-
ment and investigate optimal deployment strategies

« Endectocides for use in humans and animals
Antihypnozoite drugs

o Evaluation of P. vivax transmission reduction potential with tafenoquine via relapse
prevention (draining of hypnozoite reservoir)
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Special populations

« New small molecules or antibodies with a potential indication for use during
pregnancy

Vaccines
RTS,S

o Further evaluation of RTS,S to determine the potential for increased efficacy with
alternative dosing regimens

o Assessment of RTS,S in combination with other interventions (e.g., SMC) and in other
epidemiological settings and populations

New vaccines

o Defining the required attributes of preerythrocytic or blood-stage vaccines to achieve
transmission-blocking activity

« New preerythrocytic and or blood-stage vaccines, ideally with transmission-blocking
potential

o A first sexual-sporogonic-mosquito-stage vaccine to interrupt transmission
(SSM-VIMT)

Vaccines against P. vivax/P. ovale

« Vaccines that prevent infection and hypnozoite formation, target hypnozoites, or can
interrupt transmission to eventually eliminate the hypnozoite reservoir

Adjuvants
o Access to a broader choice of adjuvants with improved risk-benefit profiles
Prophylactic biologics

« Development of monoclonal antibodies (mAbs) and combinations of recombinant
multi-mAbs products

Vector control

Insecticides and long-lasting insecticidal nets (LLINs)

« New insecticides and combinations of insecticides to overcome vector resistance
 Nonpyrethroid insecticides for LLINs

« Investigation of new insecticide deployment strategies

 LLINs with improved durability

Environmental management

« Formal investigation of larval source management in a greater variety of settings
« Development of long-lasting safe larvicides

« Development of cost-effective and socially acceptable environmental management
interventions

Genetic approaches
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« Development of scalable genetic approaches

o Development of environmentally and socially responsible methods for field testing
transgenic organisms

Exploiting vector behaviour

« Novel interventions to target populations and behaviours

« Increased entomological support for key decisions by national malaria programmes
Combination and mapping

» Modelling to suggest the most effective and efficient combinations of vector control
for different settings

« Developing operationally relevant mapping tools to identify and target residual
transmission

“Tools to develop tools’

« Validating outcomes from animal and human infection models that predict a reduc-
tion in transmission in real-life settings

 Robust mathematical and laboratory models of transmission and impact of combina-
tion interventions

o Increased understanding of parasite-host immunity and mechanisms of acquired and
vaccine-induced protective and transmission-blocking immunity

« Development of high-throughput screening assays and evaluation assays for the identi-
fication and selection of compounds with neglected profiles (e.g., antihypnozoite
activity)

convinced that tools are impactful and cost-effective [9]. However, measuring the efficacy of
tools that potentially impact transmission is problematic, particularly at the extremes of trans-
mission [154]. Thus, new diagnostics and screening methods are required to assess tool effi-
cacy in low-transmission settings and determine their contribution to maintaining zero
transmission [73]. Moreover, the development of new diagnostics with improved sensitivity,
or for specific tasks such as resistance surveillance, may fundamentally change our perception
of malaria parasite transmission and our understanding of the most appropriate interventions
required to interrupt transmission.

Finally, developing new tools can be expensive. When the malaria burden is significant, the
economic case for innovation is clear. However, as the malaria burden decreases, the economic
argument for continued development becomes more nuanced. Public-private partnerships,
which first emerged 15 years ago, have demonstrated the ability to partner and drive develop-
ment for a variety of tools, including diagnostics (e.g., PATH and Foundation for Innovative
New Diagnostics), drugs (e.g., Medicine for Malaria Venture and formerly Drugs for
Neglected Diseases Initiative), vaccines (e.g., PATH Malaria Vaccine Initiative and European
Vaccine initiative), and vectors (e.g., Innovative Vector Control Consortium and more broadly
Malaria No More). New business models to attract and engage industry in developing tools for

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002455 November 30, 2017 21/35



@PLOS ’ MEDICINE

the elimination should be considered as well. Interventions will be directed at increasingly
smaller populations, but these populations often represent the most difficult contexts in which
to achieve elimination, and multiple interventions may be required. Once a country achieves
elimination, there is the temptation to scale back infrastructure and interventions for malaria.
This risks triggering a potentially lethal outbreak that could be difficult to reeliminate or even
contain. There are numerous examples from earlier malaria elimination campaigns in the
1950s and 1960s of initial successes that were followed by resurgence as campaigns were
deprioritized or discontinued administratively, financially, and technically. Unless malaria can
be completely eradicated, interventions to maintain malaria elimination and a reserve of effec-
tive measures to counter malaria outbreaks will always be needed. However, if the right prod-
ucts and strategies are developed, and if they are used efficiently, effectively, and consistently,
malaria eradication is an achievable goal.
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Abstract

This paper summarises key advances and priorities since the 2011 presentation of the
Malaria Eradication Research Agenda (malERA), with a focus on the combinations of inter-
vention tools and strategies for elimination and their evaluation using modelling approaches.
With an increasing number of countries embarking on malaria elimination programmes,
national and local decisions to select combinations of tools and deployment strategies
directed at malaria elimination must address rapidly changing transmission patterns across
diverse geographic areas. However, not all of these approaches can be systematically eval-
uated in the field. Thus, there is potential for modelling to investigate appropriate ‘packages’
of combined interventions that include various forms of vector control, case management,
surveillance, and population-based approaches for different settings, particularly at lower
transmission levels. Modelling can help prioritise which intervention packages should be
tested in field studies, suggest which intervention package should be used at a particular
level or stratum of transmission intensity, estimate the risk of resurgence when scaling down
specific interventions after local transmission is interrupted, and evaluate the risk and impact
of parasite drug resistance and vector insecticide resistance. However, modelling interven-
tion package deployment against a heterogeneous transmission background is a challenge.
Further validation of malaria models should be pursued through an iterative process,
whereby field data collected with the deployment of intervention packages is used to refine
models and make them progressively more relevant for assessing and predicting elimination
outcomes.

Summary points

« Since 2011, there have been significant improvements in the development, organisation,
and infrastructure of country programmes for malaria control and elimination globally.
This has included the increasing use of combinations of interventions against the mos-
quito vector and the parasite in humans to reduce transmission in large and expanding
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geographies and populations and an adaptation of these interventions as transmission is
progressively reduced.

Similarly, there has been substantial improvement in the sophistication and field valida-
tion of malaria transmission models and their ability to describe and predict the effects
of ecologic changes and the impact of specific interventions. These advances permit the
investigation and comparison of multiple complementary interventions in elimination
settings.

o There is an increasing need to combine interventions into ‘packages’ that can be tailored
to specific settings based on the characteristics of their transmission dynamics and epi-
demiology (landscape stratification). The challenge is to identify the complementary
components of each intervention package and establish the triggers and thresholds for
their deployment (or withdrawal) throughout the elimination process, including main-
taining elimination once transmission has been interrupted.

Introduction

In 2011, the Malaria Elimination Research Agenda (malERA) made recommendations for
how mathematical modelling efforts could best inform policy and guide research for specific
intervention tools for elimination—diagnostics, drugs, vector control, and vaccines [1]. Since
then, experience with malaria intervention tools has grown, and the toolbox has expanded
with new drugs, new insecticides, better diagnostics, and a first vaccine [2]. As more countries
seek elimination, grouping tools to best address diverse and changing transmission intensity
has become a central issue. Some tools are oriented primarily towards reducing disease bur-
den, e.g., seasonal malaria chemoprevention; others are dedicated to reducing transmission,
e.g., drug-based population-wide parasite clearance; and some meet both of these objectives,
e.g., vector control. Thus, not all tools will contribute equally to malaria elimination, and the
timing and duration of their use must adapt as programmes progress.

This paper summarises progress since the initial malERA publication regarding transmis-
sion-aligned ‘elimination tool packages’ and deployment strategies and opportunities for mod-
els to help inform and prioritise intervention choices. The findings come from an extensive
literature review of published and unpublished materials and the deliberations of the 2015
malERA Refresh Consultative Panel on Combination Interventions and Modelling, which
includes specialists from malaria modelling, field researchers, and National Malarial Control
Programme (NMCP) representatives [3].

Methods

The findings presented in this paper result from an extensive literature review of published
and unpublished materials and the deliberations of the 2015 malERA Refresh Consultative
Panel on Combination Interventions and Modelling. Electronic databases were systematically
searched for published literature from 1 January 2010 until 1 August 2015, without language
limitations. The websites of the institutions that apply modelling techniques to malaria
research questions and the MESA Track database of current research projects relevant to
malaria elimination were systematically searched to identify pertinent ongoing research.
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Panellists were invited to recommend additional literature and additional ongoing research
projects. The comprehensive search for literature and ongoing research provided the basis for
launching the second step.

A 2-day workshop was held with the majority of the panel members, including specialists
from malaria modelling, field researchers, and NMCP representatives. The panel broke into 2
working groups to identify the issues in combining interventions and how mathematical
modelling could be applied to these problems. Each group fed back to a plenary session in
which further robust discussions and input occurred. This helped refine the opportunities and
gap areas in which research is needed. The final findings were arrived at with inputs from all
panellists and several iterations of the manuscript.

Intervention packages to achieve elimination

Over the past 5 years, regardless of initial local transmission levels, most countries have contin-
ued to reduce the clinical burden of malaria and transmission [4]. The World Health Organi-
zation (WHO) recently published its Global Technical Strategy (GTS) for Malaria 2016-2030
(Fig 1) [5]. This builds on the core activities of vector control, case management, and surveil-
lance, with additional interventions to accelerate progress to elimination. In the GTS, for the
first time, modelling studies were used to support goal setting [5].

The malERA Refresh Consultative Panel on Combination Interventions and Modelling
approach encompassed the full spectrum of malaria transmission—addressing emerging pro-
grammatic aims and combining into ‘packages’ the available tools and strategies directed
towards malaria elimination (Fig 2). As transmission is reduced to very low levels, the inter-
vention packages must adapt to increasingly focal and heterogeneous populations, in which
infections are rare. Given the extensive range of available tools and the diversity/heterogeneity
of transmission settings, it becomes difficult to field test all possible intervention packages.
Models can assist the prioritisation and design of clinical trials and in the choice of an inter-
vention package to achieve their desired goals.

Progress in combination interventions and modelling

Initial malERA recommendations for a research and development agenda in mathematical
modelling are shown in Box 1 [1]. Subsequently, the scope and depth of research has expanded
to include diverse vector control strategies, complex diagnostics, drug and vaccine dynamics,
and deployment strategies. Additionally, infection models have advanced following incorpo-
ration of new field trial data, particularly regarding mass drug administration (MDA) and spe-
cific aspects of vector control, providing greater plausibility to model predictions.

The interface between modelling and implementation has not developed as was perhaps
envisaged, in terms of appropriate portals to allow "end users’ access to relevant software and
explore the effect of varying conditions on the ideal choice of control measures. However, the
development, organisation, and infrastructure of malaria modelling has improved (Box 2),
and recent efforts include an expansion of open-access data and software [6-13]. Also, model-
ling has been incorporated at the policy level within WHO [5] and included in planning tools
for malaria elimination [14]. Wider implementation is possibly now dependent upon the
development of next-generation models that sufficiently address combination interventions
against a background of heterogeneity and low transmission as more countries move towards
elimination.

These advances are complemented by discoveries in basic science, large field trials of new
and existing interventions, and substantial data gathering efforts that provide the raw evidence
to further validate models. A number of recent reports used models to address the role of
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Global Technical Strategy
for Malaria 2016-2030

Pillar 1 Pillar 2 Pillar 3
Ensure universal Accelerate efforts Transform malaria
access to malaria towards elimination surveillance into a

prevention, diagnosis and attainment of core intervention
and treatment malaria-free status

Supporting _ _ )

Element 1 Harnessing Innovation & Expanding Research
Supporting Strengthening the Enabling Environment
Element 2

Fig 1. Schematic of the pillars and supporting elements of the World Health Organization (WHO) Global Technical Strategy for
Malaria 2016—-2030 (source: WHO, 2015) [5].

https://doi.org/10.1371/journal.pmed.1002453.g001

multiple complementary interventions (Table 1) [15-35], and additional field trials are ongo-
ing (Table 2) [29].

Consensus modelling

In consensus modelling, independent modelling groups examine the same research question,
sometimes using the same source dataset to parameterise their model. Through objective com-
parison and critique, modelling groups have reached a degree of consensus on important
issues, such as the relationship between health burden and transmission intensity [6], and have
undertaken an in-depth analysis for the RTS,S vaccine [36]. Such efforts are resource intensive
but may give robust answers incorporating the breadth of uncertainty in our understanding.
There is also value in less intensive forms of model comparison in which common findings
from work conducted independently are assessed (Table 3) [9,18,21,23,24,28,30-32,35,37-58].
This approach can also be particularly useful for identifying areas in which there is a lack of
consensus, as this can focus efforts on further model development, basic science, and field data
collection needs.
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EIR API (range)
PfPR, % (range) Weekly Cases per 1,000 (range)
RANGE OF TRANSMISSION INTENSITY
100 10 1 0.1 0.01 0.001 0 0
50+ (35-60+) 35+ (20-40) 20 (7-27) 10 (1-12) 1(0.3-3) <1 0 0
650+ (500-750+) 500 (350-600) 350 (250-420) 175 (130-240) 20 (15-30) <5 0 0
30+ (25-35+) 25 (18-29) 15 (10-20) 8 (5-10) 1(0.3-3) <1 0 0
A hi o
Very high High Medium Low Very low - Zero ' R

PROGRAMMATIC AIMS

Reduce disease Reduce Address Achieve, document and
burden transmission transmission foci sustain zero transmission

COMBINATION INTERVENTIONS

: . Surveillance needs : :
Parasite and vector resistance Human immunity

Pre-requisites

Cost and timeframe

Fig 2. An example of the role of modelling across the spectrum of malaria elimination. Note that the measures of transmission are based on
sub-Saharan Africa, and other constructs and transmission levels may be relevant in different geographical areas. Malaria transmission intensity
measures and the relationship entomologic inoculation rate for Plasmodium falciparum from very high to zero transmission are adapted from data
presented in [6]; personal communication from D. Smith and P. Gething. Zero refers to no locally transmitted cases of malaria infection; imported
infections may be identified. Intervention package components and sequencing will depend on transmission intensity at the start of the elimination
programme, the speed at which transmission declines, and the underlying typology (i.e., malaria epidemiology, species, vector ecology, and health
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system factors). EIR, entomologic inoculation rate: average number of infectious mosquito bites per person per year; N.B. the table is organised by
log differences in the EIR, and other measures are aligned (approximated) based on these entomologic measures. PfPR, P. falciparum parasite
rate: proportion of people with a current infection with P. falciparum—typically determined by a population-based survey and often timed to a
specific interval of the transmission season. API, annual parasite index: number of confirmed malaria cases per 1,000 population per year. Cases,
cases per health facility per week: average number of confirmed malaria cases expected to present on an average week to a health facility serving a
population of 5,000 people. Because many infections can be asymptomatic at any point in time (and thus not present to health services), the
proportion of asymptomatic individuals varies with transmission intensity, and because most transmission is seasonal, these average estimates
may vary substantially by location and season.

https://doi.org/10.1371/journal.pmed.1002453.9002

Next steps for combination interventions and modelling in malaria
elimination

Fig 2 provides an example of how transmission strata, programmatic aims, the choices of interven-
tion packages, and the iterative development between modelling and programme choices change
together as malaria transmission intensity is progressively reduced towards zero, summarizing key
opportunities and identifying challenges. Note that not all countries will start from high transmis-
sion levels and that the measures of transmission used in Fig 2 are based on sub-Saharan Africa.
Thus, other constructs and transmission levels may be relevant in different geographical areas.

Opportunities
Combination intervention modelling

There has been considerable progress in modelling combination interventions. Models have
been developed to examine the overall expected impact of diagnostic, drug, vaccine, and vector

Box 1. 2011 malERA research agenda for modelling to support
malaria elimination.

Further development of models and model systems:
« Within-host dynamics of Plasmodium infections
o The human infectious reservoir

« Bionomics and ecology of the vectors

« Dynamics of the stimulation and decay of human immunity across a range of trans-
mission settings

« Heterogeneities in host, vector, and parasite dynamics

« Heterogeneities in host and vector movements

+ Drug pharmacokinetics/pharmacodynamics

« Vaccines that interrupt malaria transmission

« Ecology of genetically modified mosquitoes

« Development and impact of drug and pesticide resistance

o Integration of health system attributes and linking to microeconomic outputs
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Box 2. Recent advances in malaria modelling.
Communications:
« A growing number of modelling groups are working in a collaborative fashion

o Greater engagement between modellers, country programmes, and operational
research partners has helped refine the paramount research questions

Models:

o The development of model systems that are diverse but much improved in terms of
their incorporation of malaria biology and natural history, as well as validated esti-
mates for intervention effects, drug pharmacokinetics/ pharmacodynamics, and vac-
cine dynamics

 The development of models that allow the investigation of target product profiles for
new tools—for example, diagnostics, surveillance systems, and drugs

Infrastructure:

o Greater dissemination of malaria models at different levels of user-interface complex-
ity, through online hosting and open-source code repositories leading to wider access
to modelling information for programme implementers, planners, and policy decision
makers

« Improved means of compiling data and using common ontologies, frameworks, and
metadata standards with growing international databases of some measures of malaria
transmission, e.g., parasite rate surveys

control intervention combinations, including cost-effectiveness [16,18-20,24,48,57,59-62],
and comparing interventions added to the backbone of standard measures [21-23,25-
27,30,36,63,64]. Modelling studies have investigated the applications of several new potential
interventions such as the RTS,S vaccine [36], ivermectin [19,54], mosquito traps [17], and
next-generation diagnostics [25,33,65,66] and have highlighted critical attributes of new prod-
ucts, such as a preerythrocytic vaccine [20,67-69], genetically modified mosquitos [70-72],
and combinations of future interventions [73].

Models are designed to allow scale-up and scale-down of interventions over time. The next
step is to define the epidemiological information that would be most informative for making
such dynamic changes and the triggers for switching or scaling. The aim is to develop a set of
rules that define the characteristics of transmission that can direct specific changes in the compo-
sition and phasing of intervention packages and their targeting to specific locations and popula-
tions. These predictions can then be evaluated with further evidence from specific field trials. If
reliable, such measures could be used in the subnational stratification of intervention packages.

Accelerating community clearance of malaria parasites. One hypothesis being tested in
various settings is the potential to accelerate elimination by targeting the human parasite reser-
voir (symptomatic and asymptomatic) with time-limited deployment of community-based
interventions such as MDA or mass screening and treatment (MSAT) [74]. If the intervention
is justified, a wealth of modelling studies provides guidance on optimizing its deployment
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Table 1. Key modelling studies on combination interventions quarter 4 2010—quarter 1 2016, with the
main outcome indicated.
Multi-intervention combined

* Mass campaigns with antimalarial drugs are highly effective at interrupting transmission if deployed shortly
after ITN campaigns [15].

* Compared with untargeted approaches, selective targeting of hot spots with drug campaigns is an
ineffective tool for elimination because of limited sensitivity of available field diagnostics [16].

* High coverage with a combination of LLINs and attractive toxic sugar baits could result in substantial
reductions in malaria transmission [17].

* Mass treatment needs to be repeated or combined with other interventions for long-term impact in many
endemic settings [18].

¢ Including ivermectin in mass treatment strategies could be a useful adjunct to reduce and interrupt malaria
transmission [19].

* Preerythrocytic vaccines will have a maximum impact where bed net coverage has saturated, vector
feeding is primarily outdoors, and transmission is moderate to low [20].

Multi-intervention compared

* While adult killing methods can be highly effective under many circumstances, other vector control
methods are frequently required to fill effective coverage gaps [21].

* Adding vaccines to existing vector control efforts extends the ability to achieve elimination starting from
higher baseline transmission levels and with less favourable vector behaviour [22].

* Decreases in malaria transmission and burden can be accelerated over the next 15 years if the coverage
of key interventions is increased [23].

* Vector control plans should consider the spatial arrangement of any intervention package to ensure
effectiveness is maximised [24].

* The sensitivity of the diagnostic can play a part in increasing the chance of interrupting transmission [25].
* A failing partner drug will result in greater increases in malaria cases and morbidity than would be
observed from artemisinin resistance only [26].

* Selecting combinations of interventions that target different stages in the vector’s life cycle will result in
maximum reductions in mosquito density [27]

Multi-intervention: Cost-effectiveness

¢ In all the transmission settings considered, achieving a minimal level of ITN coverage is a ‘best buy’. At
low transmission, MSAT probably is not worth considering. Instead, MSAT may be suitable at medium to
high levels of transmission and at moderate ITN coverage [28].

ITN, insecticide-treated bed net; LLIN, long-lasting insecticidal bed net; MSAT, mass screening and
treatment.

https://doi.org/10.1371/journal.pmed.1002453.t001

[15,18,28,32,33,41,53-55,57,75-79]. However, estimating the level of coverage required for
successful MDA is critical [53], and for MSAT, the sensitivity of the diagnostic tool is an addi-
tional key determinant of efficacy as the current tests may fail to detect low-level infections
[16,25].

Current models of MDA all include the parameters whereby immediately following MDA,
there is a dramatic drop in malaria prevalence, but in the absence of elimination, prevalence
returns to preintervention levels (albeit at different rates depending on the model) [53]. Coun-
try malaria programs are increasingly aware of this potential and have learned not to rely solely
on MDA to eliminate transmission; thus, MDA is an accelerator used to move to a next set of
interventions and strategies to find and clear the remaining transmission foci. The models
must now be adapted to include a next set of actions with the potential to end transmission,
i.e., MDA moving to focal MDA (fMDA) and other reactive strategies in households and
neighbourhoods with rare but remaining transmission [33,79,80]. In the field, these increas-
ingly infrequent actions will require robust local information systems as part of the interven-
tion, rather than models.

Non-falciparum species. Recent progress has been made in models considering non-fal-
ciparum parasites and vectors, though further work is needed [76,81-95]. To address the public
health and public engagement challenge of eliminating all human malaria species, multispecies
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Table 2. Ongoing field studies in combination interventions as reported on the MESA Track database
[29].

Vector control

» Combining indoor residual spraying and long-lasting insecticidal nets for malaria prevention: a cluster
randomised controlled trial in Ethiopia (Maltrials); Ethiopia (Sep 2014—Sep 2016); Addis Ababa University,
Ethiopia

* Integrated vector management: Interaction of larval control and indoor residual spraying on Anopheles
gambiae density and vectorial capacity for human malaria; Malaria Research and Training Center (MRTC),
University of Bamako, Mali

*|RS and LLIN: Integration of methods and insecticide mode of actions for control of African malaria
vector mosquitoes; Tanzania, United Republic of; Ifakara Health Institute (IHI), Swiss Tropical and Public
Health Institute (Swiss TPH)

* Cluster randomised trial of the impact of dual-insecticide treated nets vs. traditional LLINS on malaria
vectors and malaria epidemiology in 2 districts of Mali; Mali (Dec 2013—-Dec 2014); Centers for Disease
Control and Prevention (CDC), United States

* The Majete Integrated Malaria Control Project (MMP): Community-based malaria control in the
perimeter of Majete Wildlife Reserve in Chikhwawa district using a Scale-Up-For-Impact (SUFI) strategy,
assessing complementary intervention options, including larval source management and house
improvement; Malawi (Jan 2014—Dec 2018); Wageningen University, Netherlands; University of
Amsterdam; College of medicine, University of Malawi; Liverpool School of Tropical Medicine

Case management and surveillance

* Routine case investigation and reactive case detection for malaria elimination in Richard-Toll District in
northern Senegal; Senegal (2012-2017); PATH MACEPA, National Malaria Control Programme (NMCP)
Senegal
Mass treatment

* The Haiti Malaria Elimination Consortium (HaMEC); Dominican Republic, Haiti (Feb 2015-2020);
Malaria Zero Consortium, US

* Assessing the effectiveness of household-level focal mass drug administration and community-wide
mass drug administration with dihydroartemisinin + piperaquine for reducing malaria parasite infection
prevalence and incidence in Southern Province Zambia; Zambia (2014—2016); PATH MACEPA, Tulane
University, Zambian National Malaria Control Centre

* Population parasite clearance to decrease malaria transmission in Amhara Region, Ethiopia: a pilot
study; Ethiopia (2014—-2015); PATH MACEPA, Ministry of Health (MOH) Ethiopia

* Reduction of malaria parasitaemia and transmission in low to moderate seasonal transmission settings
(Kanel, Ranérou and Linguére) in Senegal: a pilot study; Senegal (2014-2015); PATH MACEPA, National
Malaria Control Programme (NMCP) Senegal

* Community reactive case detection versus reactive drug administration in malaria elimination areas: a
cluster randomised controlled trial; Zambia (2016—-Dec 2017); Akros

* Assess the micro-epidemiology of resistant falciparum malaria in SE Asia and to perform and evaluate
an intervention with targeted chemo-elimination through a modified mass drug administration approach
(Cambodia, Myanmar, Thailand, Vietnam); Cambodia, Myanmar, Thailand, Vietham (2014—Oct 2016);
Mahidol Oxford Tropical Medicine Research Unit (MORU)

* Evaluation of the impact of seasonal malaria chemoprevention delivered by district health services in
southern Senegal; Senegal (2013-2018); Cheikh Anta Diop University, Senegal

IRS, indoor residual spraying; LLIN, long-lasting insecticidal net; SE, Southeast.

https://doi.org/10.1371/journal.pmed.1002453.t002

mathematical models that consider unified strategies and exploit the interactions between the
species for improved cost-effectiveness should be used [96]. Notably, where P. vivax is present,
the malaria programme might be sustained even as P. falciparum becomes rare and is elimi-
nated. However, different approaches to both surveillance and malaria interventions would be
required to reduce the P. vivax burden while detecting P. falciparum cases and preventing the
reestablishment of P. falciparum transmission.

Surveillance as an intervention

Surveillance is an intervention tool. When honed for elimination purposes, surveillance must
evolve to be able to discover evidence of transmission; establish its location, timing, nature,
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Table 3. Consensus across multiple groups from modelling analyses conducted by each of the
Malaria Modelling Consortium? groups, which assessed impact on malaria transmission of combin-
ing multiple interventions or multiple methods of using a single intervention®.

Vector control

* Achieving and maintaining high effective coverage of the population with LLINSs is consistently predicted to
result in the greatest reduction in transmission in a variety of settings and in many cases enables other
interventions to become more effective and longer lasting [21,23,24,28,30,32,35,37-43,55].

» Other interventions such as IRS are also predicted to be effective and can even be more effective than
LLINs in specific settings, particularly if sustained and optimised through seasonal or spatial targeting
strategies [32,39,42].

* Vector control interventions that maximise killing of adult female mosquitoes are predicted to have the
greatest transmission reducing effect (as opposed to repellents or killing juveniles); however, the optimal
choice of intervention(s) will depend on both the specific bionomics of local vectors and the costs required
to reach high levels of effective coverage with each intervention [21,23,44—46].

Case management and surveillance

* Even before considering elimination, improving access to care has an important role to play in significantly
reducing deaths and severe disease [9,41,47-49].
* While differing considerably in magnitude, all the models agree that levels of access to treatment of
incident malaria cases and the delay in seeking treatment are 2 key measures that influence the endemicity
at baseline (no interventions) and, as such, determine the following:

o what scale of community-based programme will be required to achieve and maintain elimination
[28,30,32]

o what the risk will be of scaling back vector-based interventions post elimination [23,43,50,51]
Mass Treatment

* Short mass treatment campaigns will reduce the parasite reservoir—and consequently, transmission—in
the short term but will have no long-term benefits unless other interventions are scaled up at the same time
and then maintained [18,23,28,31,32,35,42,52-55].

* Treating a large proportion of the population in a single year in at least 1 round is a key determinant of
MDA effectiveness whether it is achieved through high coverage in a single round or through follow-up
rounds that reach new individuals [41,53,55-57]

* The addition of primaquine to MDA with long-lasting ACTs offers a small additional transmission reduction
in the majority of epidemiological settings [18,30-32,42,53,54,57,58].

* Due to the prophylactic effect of treatment, MDA will always be more effective than MSAT or fMDA. If
adherence or drug resistance is included in the model analysis, then this conclusion is more nuanced, and
risk of drug resistance emergence and spread is an area with a lack of clear consensus among existing
models [18,31,35,41].

* The longer-term effectiveness of MDA is highly sensitive to the population size of the trial area and its
connectedness to other areas [18].

2 Imperial College, London, United Kingdom; Institute for Disease Modelling, Seattle, Washington, US;
Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand; Swiss Tropical and Public Health
Institute, Basel, Switzerland; and University of Oxford, Oxford, UK.

® Compiled by Oliver Brady (University of Oxford) and Samantha Galvin (Bill & Melinda Gates Foundation).
ACT, artemisinin-based combination therapy; fMDA, focal mass drug administration; IRS, indoor residual
spraying; LLIN, long-lasting insecticidal bed net; MDA, mass drug administration; MSAT, mass screening
and treatment.

https://doi.org/10.1371/journal.pmed.1002453.t003

and causes; identify and eliminate residual foci; prevent, detect, and contain imported malaria;
and demonstrate the attainment and maintenance of zero malaria transmission [97]. As trans-
mission declines, modification of data collection and reporting systems requires substantial
investment and coordination across the malaria programmes and the surveillance manage-
ment unit. Designing the necessary flexibility into a surveillance system to allow for adaptation
to an elimination context will be critical.

There is an opportunity to use modelling to define the required components of surveillance
systems depending on the stage of the elimination programme. This requires quantification of
the detrimental effects of inaccurate, insufficient, or untimely surveillance and the beneficial
effects of adding new measures to the surveillance system [25]. Modelling could also be used to
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assess the level of hidden/unidentifiable cases/infections that would hinder (or would not hin-
der) elimination (e.g., asymptomatic or individuals with minor symptomology who would not
seek treatment). As transmission declines, the addition of serological measures of past expo-
sure [65,98-102] or active community-based transmission measurements and reactive case
management [103-107] may be considered. Modelling can estimate the incremental benefit of
adding specific surveillance activities to an already established surveillance system and could
examine cost-effectiveness issues [48,108], specific epidemiologic aspects of contract tracing
[109], and the target product profile of diagnostics [25,65,66] in case-investigation or foci-
investigation settings.

Parasite and vector resistance

As efforts to reduce transmission are intensified, the risk and impact of parasite drug resistance
and vector insecticide resistance becomes a key concern [110-112]. Modelling has been used
to investigate the effects of resistance [25,26,30,32,113-116], and there have been some studies
examining risk factors for resistance and drug failure [114,117-119]. Geostatistical models are
also being developed to predict localities where resistance might be present in order to target
surveillance activities, for example, mapping artemisinin-resistance in Southeast Asia [120].
The biology and natural history of mosquito vectors and malaria parasites tells us that the
development and evolution of resistance will continue, given the pressure of insecticides and
drugs. In terms of drug treatments, with artemisinin-based combination therapies (ACT's)
globally recommended for malaria treatment, the focus must be on investigation of artemisi-
nin and partner drug resistance, in terms of how this can be contained within the Greater
Mekong subregion [111], and how its emergence or importation can be avoided in other
regions [25,115]. Note that as transmission declines, the remaining parasites are those most
likely to harbour resistance. Thus, even as malaria cases decline, continued field studies and
modelling must be supported to address the efficacy and effectiveness of intervention tools
critical for elimination programming. The next steps are to investigate how packages of inter-
ventions can be modified to mitigate the effects of resistance on existing interventions
[30,121-123], how resistance can be contained [32], and how resistance can be avoided, partic-
ularly for new drugs and insecticides [124,125].

Human immunity

A gradual decline in human immunity to malaria across the population is an inevitable conse-
quence of reducing malaria transmission and contracting parasite diversity [126,127]. The
resulting delay in acquiring immunity likely will alter the age distribution and severity of
malaria infections [126,128,129]. Understanding these changes is necessary to identify the
most vulnerable populations or those most likely to need an intervention [128,130]. Models
already include age-dependent immune factors and have dynamic modulation of immunity as
a function of entomological inoculation rate [128,131], though additional temporal data could
help reduce the uncertainty surrounding these functions. Gaps remain in our understanding
of immunity in areas of long-standing low transmission (e.g., Haiti), where the level of asymp-
tomatic infections is much higher than previously thought [132].

Modelling to inform policy

Strategic decisions are already being taken as part of elimination planning in a number of
countries. There are numerous opportunities for modelling to inform these decisions—for
example, scenario planning. An Elimination Scenario Planning (ESP) toolkit was published by
WHO in 2014 following field testing using data from The Gambia and Senegal [14]. The
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manual is linked to software that models malaria transmission (currently limited to P. falcipa-
rum in Africa), which allows users to explore the effect of a range of combinations of malaria
control interventions in order to achieve elimination. Such an approach has wide application
and could be extended to P. falciparum outside Africa or P. vivax settings in the future. A key
consideration is that malaria policy will need to respond to climate change. Historical data
may become less reliable as seasonal patterns of rainfall and land use alter. Mapping climate
change effects and possible scenarios following the varied consequences of climate change for
human and vector population distributions has been investigated at continental and national
levels, but incorporating this into policy is more challenging [133-151].

Mathematical models can provide a framework for exploring the relationship between pop-
ulation movement, heterogeneous transmission, and the deployment logistics of a national or
regional elimination strategy. To carry out such analyses, new model frameworks should be
developed that benefit from new field and genetic data characterising and measuring spatially
and temporally dynamic transmission routes.

There is an increasing demand from NMCPs for pertinent and prompt mathematical
modelling analyses to support their malaria elimination strategies. Established modelling
groups have engaged in local capacity building. Also, malaria modelling research is being pub-
lished by research groups from malaria-endemic countries [33,34,62,89,152-154], and this
trend could be supported to the benefit of NMCPs.

Modelling to maintain zero

As noted above, when transmission becomes rare, models are increasingly challenged in
informing policy and intervention choices; similarly, when there is no transmission, the evalu-
ation of risk for the reintroduction of infection (vulnerability) and the risk of propagating local
transmission given its reintroduction (receptivity) can present challenges to models designed
to answer questions at high endemicity levels. A new class of highly heterogeneous, stochastic
malaria models is being developed to inform the design of an elimination surveillance system.

Vulnerability (risk of introduction or reintroduction). Measuring vulnerability to
malaria reintroduction requires pairing up-to-date maps of national and international parasite
prevalence with human movement models. Both of these fields have advanced in recent years
[33,34,117,155-160]. Human movement models, paired with travel survey and microcensus
data, have improved their description of routine human movement (e.g., holiday season travel)
[159,161]. Increasing use of mobile phones has enabled the tracking of human movement and
permitted distribution advice on infection avoidance [159,162-164]. However, many national
and international seasonal migrations remain difficult to predict, and their direct relationship
to moving malaria infections requires additional investigation.

Receptivity (risk of transmission given introduction). In order to direct interventions,
models must incorporate both the risk of importation and the risk for the reestablishment of
local transmission [165-173]. The risk of malaria transmission reestablishment can be mea-
sured as a function of selected host, vector, and environmental data [156,170,171, 174]. For
example, measures might include human use of insecticide-treated bed nets or indoor residual
spraying, mosquito habitat suitability and its link to abundance, and climatic conditions (e.g.,
temperature, rainfall, and vegetation index measures) that support or accelerate vector and
parasite development. If such data are collected widely enough, models can be validated using
the occasional areas that do experience local transmission. Deciding which environmental and
entomological data would be most valuable to collect could be iteratively informed by testing
hypotheses based on longitudinal data from areas that have recently eliminated malaria, for
example, Sri Lanka. The next step is to translate risk mapping into programmatic actions, such
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as better allocation of human resources, and maintenance and targeting of vector control
[50,175]. This will become increasingly important as more countries reach elimination.

Challenges
Residual transmission

Variable human and vector behaviours may enable sustained transmission in highly seasonal,
heterogeneous environments, despite high intervention coverage [176]. The magnitude and
importance of residual transmission in different settings require further field studies. In partic-
ular, human sociobehavioural data including human behaviour’s relevance for compliance
and entomological data investigating the contribution of outdoor transmission are needed to
develop models testing novel strategies and tools [102].

Low transmission and incorporating heterogeneity

Models have mostly been used to examine sub-Saharan Africa high transmission contexts with
P. falciparum and relevant vector species, though they may be parameterised across the full
spectrum of transmission. When modelling an isolated homogeneous population, it can be dif-
ficult to sustain transmission much below the 1% parasite prevalence level (though the precise
level depends on the model), with the model becoming unstable, leading to ‘stochastic extinc-
tion’, i.e., the extinction of parasites based on random effects within the model, an effect that is
compounded with increasing heterogeneity [177]. This suggests that importation of infections
and local heterogeneities in host, vector, and parasite dynamics and in health service delivery
systems are likely to play an important role in sustaining malaria in low transmission settings
[178].

As a country progresses to very low levels of malaria transmission, the spatial and temporal
heterogeneity of transmission increases in importance. In these contexts of varying historical
transmission intensity, intervention coverage, human movement, and access to health system
resources, malaria will tend to persist in the most remote regions and the poorest and most
vulnerable populations [179,180]. While this issue may not require new models per se, hetero-
geneity will need to be better captured as transmission declines. Spatial heterogeneity is proba-
bly least well developed, and the required level of spatial granularity and relevant metrics for
answering specific questions in low transmission settings requires definition [181,182]. How-
ever, at some point heterogeneity will exceed the ability of models to establish granularity, and
decision making will require local health system and entomological data.

Modelling malaria at borders

When malaria transmission is moderate to high and similar on both sides of a border, often lit-
tle attention is paid to border areas for specific disease interventions; however, this changes
when one nation may be markedly reducing transmission and the other is not. Border areas
present particular difficulties for malaria control and elimination efforts [183-187]. The com-
plexity of human movements for trade, business, and visiting family, sometimes including vul-
nerable populations [188], and the coordination of efforts between different political and
organisational frameworks increase the complexity of malaria control [184]. Some of the issues
relate to spatial and temporal heterogeneity and could possibly be addressed with greater data
on human cross-border movement and parasite genetics [189-191]. However, human factors,
such as local conflicts, poverty, and the disenfranchisement of particular ethnic groups, can be
highly variable in time and place and are more challenging to incorporate into transmission
models [192,193]. Alternative complementary approaches include mapping malaria risk, for
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better targeting of resources, plus goal setting by modelling what could potentially be achieved
with coordinated versus independent elimination campaigns [33,185,194,195]. Once the
potential benefits are understood, the barriers to reaching these goals can be researched and
the feasibility of overcoming them explored.

Iteration and validation

Finally, models directed at assessing combination interventions must embrace a process of
iteration with field data. In particular, data are needed from low to near-zero transmission set-
tings. Such data needs might include high-resolution geographic information on cases, fre-
quency and location of associated secondary cases, travel history identifying infection sources,
vector-associated data, climate, and environmental parameters [109]. The requirement for
field data to validate models remains problematic, as field data on intervention efficacy and the
diverse parameters noted above can be difficult to assemble. When developing models, valida-
tion requirements should be clearly defined and data should be feasible to obtain. Amidst
these challenges, modellers then need to consider how to best contribute to and bear responsi-
bility for the assembly of required field data. Although capacity building and integration of
modellers into NMCPs may address this at a local scale, there is a need for innovative mecha-
nisms to allow increased exchanges in malaria elimination research, to allow better access to
field empirical data for modellers.

Conclusions

Given the ongoing social and economic impact of malaria-related mortality and morbidity
and the inevitable resource constraints for national malaria programmes, identifying the most
timely and most cost-effective path to malaria elimination is a priority. Box 3 presents a
research and development agenda for combination interventions and modelling in malaria
elimination. Modelling affords a feasible and practical means of investigating rational combi-
nations of interventions and the most appropriate setting for their deployment. Nevertheless,
without a substantive dataset from operations research, the construction of meaningful models

Box 3. Research and development agenda for combination
interventions and modelling.

o Determine which combinations of interventions to use in which sequence and in
response to which triggers throughout elimination

o Identify the circumstances in which time-limited elimination acceleration interven-
tions, such as mass drug administration (MDA), are appropriate and what needs to be
done to retain the gains in transmission reduction following their withdrawal

» Model the effect of parasite drug and vector insecticide resistance on combination
interventions and how resistance might be avoided or contained

 Understand human immunity in areas where transmission has always been low and
parasite diversity very low and modelling the effect of changes in human immunity as
transmission declines

o Identify which additional data would be most useful for validating or changing model
predictions in order to drive iterative development and decision making
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Surveillance as an intervention

» Model the target product profile of an elimination-specific surveillance system
o Determine the threshold at which reactive case strategies become feasible
Strategic modelling

« Estimate the long-term costs of elimination in different settings and with different
intervention packages

« Assess the potential duration of an elimination campaign in various settings to help
define the investment case and financing needs for elimination

o Estimate the maximal impact of currently available tools on elimination in various
settings

o Determine the counterfactual to elimination, i.e., the effect of continuing current
interventions in various settings

« Support capacity building of modellers embedded in National Malaria Control Pro-
grammes (NMCPs)

Modelling to maintain zero

o Investigate how vulnerability and receptivity measures can be translated into specific
programme actions

Addressing transmission
o Apply models to low transmission settings, incorporating all relevant parasites/vectors

« Investigate the importance of residual transmission in different settings and what new
strategies or novel tools are needed to overcome it

Incorporating heterogeneity

o Determine the relevance of spatial and temporal heterogeneity in transmission in dif-
ferent settings

o Investigate how much heterogeneity in transmission needs to be captured by models
to make predictions in elimination settings

Iteration and validation

 Determine which measures of transmission or other metrics are most appropriate for
guiding programmatic decisions in low transmission to maintaining-zero settings

o Define which new data need to be collected from low transmission to maintaining-
zero settings in order to increase confidence in model predictions

is not possible. Models must also be continuously validated against field data, through pro-
grammatic experience and against clinical trials, with measures and outcomes data relevant to
the transmission setting identified and collected for use in further model refinement. This is
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especially the case as we increasingly encounter transmission settings that are shrinking in size
and number and becoming more focal and heterogeneous and for which there are fewer field
data. Thus, there is a codependency between modelling and field data, and the quality of both
must be assured for findings to be valid and impactful. Since malERA 2011, there has been sig-
nificant progress in aligning modelling with programmatic requirements and more effective
communication with policy makers. This ongoing dialogue will ultimately determine the rele-
vance of modelling to policy decision and its contribution towards achieving and maintaining
malaria elimination.
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Abstract

Health systems underpin disease elimination and eradication programmes. In an elimination
and eradication context, innovative research approaches are needed across health systems
to assess readiness for programme reorientation, mitigate any decreases in effectiveness
of interventions (‘effectiveness decay’), and respond to dynamic and changing needs. The
malaria eradication research agenda (malERA) Refresh consultative process for the Panel
on Health Systems and Policy Research identifies opportunities to build health systems evi-
dence and the tools needed to eliminate malaria from different zones, countries, and regions
and to eradicate it globally. The research questions are organised as a portfolio that global
health practitioners, researchers, and funders can identify with and support. This supports
the promotion of an actionable and more cohesive approach to building the evidence base
for scaled-up implementation of findings. Gaps and opportunities discussed in the paper
include delivery strategies to meet the changing dynamics of needs of individuals, environ-
ments, and malaria programme successes; mechanisms and approaches to best support
accelerated policy and financial responsiveness at national and global level to ensure timely
response to evidence and needs, including in crisis situations; and systems’ readiness tools
and decision-support systems.

Summary points

o Since 2011, few research questions identified in malERA Health Systems and Opera-
tional Research agenda have been addressed, or only addressed in a fragmented way
by scientists and implementation researchers at national and international levels. Mul-
tiple factors, including funding, dependency upon existing national and provincial
health systems to deliver, and limited buy-in by a range of disciplines into the malaria
agenda, have contributed to this limited uptake.

o To address the complexity of health systems and any changes or adaptations within
them requires a systemic and transdisciplinary approach in the conceptualization and
conduct of the research. Transdisciplinary research requires the inclusion of various
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sectors and agencies, communities, and civil society, as well as inclusion and integra-
tion of a range of research disciplines including policy, management, and social
sciences.

o Presenting the research and development agenda here as a portfolio ensures the trans-
disciplinary and multi-stakeholder approach and can therefore help funders and
researchers take action and engage in the pursuit of this agenda according to their own
diverse priorities.

Introduction

Between 2000 and 2015, a major expansion of WHO-recommended interventions have con-
tributed to a 58% reduction in the global malaria mortality rate (69% among children under 5
years old in Africa), resulting in an estimated 6.2 million lives being saved from a malaria-
related death [1].

As part of the initial malaria eradication research agenda (malERA) process, published in
2011, a consultative group on health systems and operational research established a list of
research priorities presented in a matrix system organized by the different levels (community,
facility, district, and national levels) and building blocks of the health system [2]. Health-sys-
tem building blocks are described in Box 1. The health systems concept and framework was
based on the guiding summary on ‘health system thinking’ perspective formulated by the Alli-
ance for Health Policy and System Research [3]. One key gap that was identified in 2011 was a

Box 1. Health system building blocks that together constitute a
complete system.

« Governance: Ensuring strategic policy frameworks combined with effective oversight,
coalition building, accountability, regulations, incentives, and attention to system

design.

« Human resources: Responsive, fair, and efficient, given available resources and cir-
cumstances, and available in sufficient numbers.

Financing: Raising adequate funds for health in ways that ensure people can use
needed services and are protected from financial catastrophe or impoverishment asso-
ciated with having to pay for them.

Health information: Ensuring the production, analysis, dissemination, and use of reli-
able and timely information on health determinants, health systems performance, and
health status.

o Service delivery: Including effective, safe, and quality personal and nonpersonal health
interventions that are provided to those in need, when and where needed (including
infrastructure), with a minimal waste of resources.

« Commodities: Including medical products, vaccines, and other technologies of assured
quality, safety, efficacy, and cost-effectiveness, and their scientifically sound and cost-
effective use.
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tool to diagnose impediments in a given health system that limited the effective and equitable
impact of malaria interventions [2].

The momentum created by the successes since the turn of the century has led to reiterated
commitment and partnership and 2 complementary key documents, (i) the Global Technical
Strategy (GTS) for malaria 2016-2030 [4] and (ii) the Action and Investment to Defeat Malaria
(AIM) 2016-2030 [5], which were launched respectively by the Global Malaria Programme
(GMP) of WHO and the Roll Back Malaria (RBM) Partnership in 2015. The GTS and the
investment and advocacy framework partnership document, AIM, pave the way for intensify-
ing malaria control and elimination efforts and set ambitious yet realistic targets and goals.
The GTS clearly outlines a common technical strategy while AIM provides the investment
framework to reach these technical targets. Moving forward, GTS and AIM need to be brought
to the country level and be clearly reflected in the national malaria control and elimination
strategic plans, as well as in the overall national health policy and strategy.

In view of these advances, many challenges need to be coherently addressed in order to not
threaten continued progress. These challenges are as reflected in GTS and AIM:

1. Emerging parasite resistance to antimalarial medicines and mosquito resistance to
insecticides.

2. Systemic and technical obstacles, such as the inherent weakness of health systems, including
poor disease surveillance and limited pharmaceutical regulation.

3. Lack of adequate technical and human resource capacities including community
engagement.

4. High prevalence of asymptomatic infections and unknown dimension of the existing
asymptomatic reservoir.

5. Diversity of vectors and their behaviour.

To complement GTS and AIM, a systematic review of progress in research and development
(R&D) and a consultative process to update the research agenda, ‘malERA Refresh’, was
launched [6]. malERA Refresh can be seen as the third pillar, defining research priorities to sup-
port the GTS targets, while the business case for achieving the GTS targets is provided by AIM.

Scope of this report

In the refresh of malERA presented here, an expert panel focussed on health systems and policy
research reviewed the progress made since 2011 and set out an updated agenda and research
portfolio necessary to support the global malaria elimination agenda. While addressing broader
health system development needs would be beneficial to this as well as other public health agen-
das, it was not the focus of this piece of work, and others have addressed these in detail. A par-
ticular emphasis was placed on the elimination phase in order to best accompany the GTS and
the AIM framework, as well as to assist the national strategies and operational plans. The main
differences between the 2011 and 2017 health system agendas are that this 2017 agenda:

o Focusses on malaria, in particular malaria elimination. The 2011 agenda was a broader view
on health systems and all phases of control to elimination.

» Recognizes that 1 country can have various phases of control to elimination occurring within
its programme, so does not, as was done in 2011, group countries into phases.

o Frames the agenda as a portfolio from hypothesis driven (research), development of tools or
interventions (R&D), or synthesis of existing information and evidence (evaluation science).
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» Recognizes the need to tailor questions to different settings and therefore has left the ques-
tions deliberately broad to allow general application to specific settings.

Context and rationale

In spite of increased financial and commodity resources, progress in malaria control and elim-
ination in most countries has been slower than expected. Among the main reasons for the
slow pace are constraints on the delivery of essential health interventions, including malaria
interventions, at sufficient levels of coverage and quality to populations in need. At the same
time, the attainment of GTS targets and goals, within the AIM investment framework, will rely
heavily on well-performing health systems for the sustained control and elimination phases.

Progress has been made in recent years towards better understanding health systems and
how to strengthen them. The previous malERA health systems working group recommenda-
tions have contributed to that change, which is clearly reflected in AIM as well as health-sys-
tems thinking and is acting as an integral part of WHO GMP Malaria Policy Advisory
Committee (MPAC) recommendations [7]. Moreover, global health initiatives have certainly
increased funding for strengthening national health systems to accelerate progress on universal
access to essential health interventions, particularly for HIV/AIDS, tuberculosis, malaria, and
immunisation. Initiatives such as the Task Force on Innovative Financing for Health Systems
[8] testify to the increased commitment to funding health systems and momentum in favour
of health system strengthening, minimising the negative impacts of vertical programmes on
health systems, and leveraging malaria activities through other health programmes.

However, significant work and questions remain. By systematically reviewing the literature,
as well as ongoing research projects in health systems in the Malaria Eradication Scientific Alli-
ance (MESA) Track database [9] (see Methods and approaches section), the panel concluded
that many research priorities identified in the 2011 Panel on Health Systems and Operational
Research have hardly—or only in a fragmented way—been picked up by scientists and imple-
mentation researchers at national and international levels.

The malERA portfolio dealing with health systems attracted insufficient funding and interest
over the last few years. One possibility for this is that funding for malaria is more vertically tar-
geted on parasites, diagnostics, treatment, and vectors than on broad health systems and in part
because the agenda was more accessed by malaria scientists and not the broader health system
research community and public health practitioners. Additionally, many of the disciplines
required to engage in the health system agenda are not presently majorly involved, and the
existing malaria scientific community are not well equipped to implement the health system
agenda. There is a need to reiterate the agenda as established in 2011, but more importantly—
by building on it—add new dimensions to the research and R&D needs in the field of health sys-
tems and policy research. This paper presents the agenda as a portfolio ranging from priorities
in evaluation science to specific research questions to R&D issues (see Box 2 for definitions).

Funding partners and implementation groups have clearly prioritized the quick delivery of
malaria interventions and a system of monitoring and evaluation (M&E) linked to their fund-
ing and not necessarily integrated into routine health systems M&E, including health systems
research. Contrasting this to governments in countries affected by malaria, which are tasked
with responding to ambitious global targets and goals, reveals that these countries have long
recognised the need for health system thinking and research in order to meet the healthcare
needs of their populations. As noted above, addressing the more challenging but also more
sustainable issue of health system strengthening to support malaria eradication tends to be
postponed as it is still seen, conceptually and operationally, as a daunting issue. This difficulty
can be overcome by presenting the research and R&D priorities within a portfolio approach
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Box 2. malERA Refresh research categories to support a portfolio
approach to health systems and policy research.

« Evaluation science: Where information from the field and across several sites, con-
texts, and case studies already exists (mainly WHO/University of California San Fran-
cisco [UCSF] elimination case studies, RBM Progress and Impact reports, etc.) and an

answer to the research question could be obtained by comparative, synthetic analysis.

Research: Where new information is needed to answer a research question based on

an underlying hypothesis or where new hypotheses need to be tested.

o R&D: Where an R&D process is required, based on underlying hypotheses, to develop
a tool, a tool kit, or new approaches (e.g., surveillance as an intervention, ‘surveillance-
response’). These tools or approaches would be created based on available data and
information to serve implementers in carrying out their work. The development of
this tool, tool kit, or approach becomes the activity pertinent to this portfolio.

tailored to the different levels and building blocks of a given health and social system (Fig 1).
Addressing the list of key research questions outlined in this paper would go a long way in
strengthening malaria control and elimination and inscribing it into the fundamental health
infrastructure of endemic countries (full portfolio of questions in Table 1).

HEALTH SYSTEM -
BUILDING BLOCKS

HEALTH AND SOCIAL SYSTEMS AND
POLICY RESEARCH PIPELINE

Evgluation ---> Research ----> R&D ----» Validation
Science
................... >
................. >
Systematically Testa Develop tools  Test the
compile and hypothesis  and models implemen-
assess existing -tation of
evidence the tool,
model,or
strategy

LEVELS OF HEALTH SYSTEMS

Fig 1. Research agenda cube for health systems and policy research. R&D, research and development.

https://doi.org/10.1371/journal.pmed.1002454.9001
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Table 1. Priority questions for evaluation science, research, and R&D in health systems and policy research.

Evaluation science Health system building | Health system

block level

1st Priority: What are the social & political drivers that influence malaria elimination success within Governance National

and across regions at national and regional levels?

2nd Priority: How do optimized delivery strategies meet changing and dynamic needs of the system | Service delivery Community

requirements and/or community perceived needs?

2nd Priority: What are effective strategies and tools to sustain community workers’ engagement in Human resources Community

malaria activities during intensive control and elimination?

Additional Emphasis: Evaluation of case studies (including the malaria elimination case study series) | Cross-cutting Facility

regarding the determinants for successful scale-up of district management, financing, and human
resource models in different contexts and settings.

What mechanisms support effective integration of communicable disease surveillance? Information All

With an emphasis on decentralization, what are the management strengths required, and how can the Governance All
readiness of the different health systems structures be assessed for malaria elimination in different settings?

What is the range of effective HIS and tools to capture and use information at the community level? Information Community
What mechanisms, tools, and strategies can be utilized to sustain active community engagement in Governance Community
intensive malaria control and elimination?

What is the range of HIS and tools to effectively capture and use information at the community level? Information Community
How to scale up measures to ensure quality and quantity of health commodities at the community level in Information Community
both public and private sectors, especially to remote and vulnerable populations?

What are the key essential service delivery tools implemented at PHC level to ensure quality of malaria Service delivery Community

elimination activities (prevention, treatment, and surveillance-response) at facility and community levels in
different system contexts?

What are the key essential service delivery tools implemented at PHC level to ensure quality of malaria Service delivery Facility
elimination activities (prevention, treatment, and surveillance-response) at facility and community levels in

different system contexts?

What is the range of effective HIS and tools to capture and use information at the national level? Information National

Comparatively assess across countries and settings which mechanisms best support accelerated policy Governance National
and financial responsiveness at the national level to ensure timely response to evidence and needs,
including in crisis situations.

Comparatively assess across various countries and subnational settings which are the effective approaches | Financing National
and their determinants to transition funding to sustainable financing sources.
What are efficient and ethical approaches to health security issues that can be applied to managing malaria | Governance National
in epidemics, reintroduction, and resurgence?
Comparatively assess which mechanisms best support accelerated policy and financial responsiveness at | Governance Regional/Global
the global level to ensure a timely response to evidence and needs, including in crisis situations.
What are the social and political drivers to influence malaria elimination within and across regions at country | Governance Regional/Global
and regional levels?
Research Health system building | Health system
block level
1st Priority: What are the decision-making frameworks required to eliminate and prevent Governance National
reestablishment of malaria?
2nd Priority: What is the best way to optimize malaria elimination delivery strategies to meet the Service delivery Community
changing dynamics of needs of individuals, environments, and malaria programme successes?
What are the determinants of efficiency of community-level health service delivery and of community Financing Community
systems, with an emphasis on malaria elimination outcomes?
Which innovative measures would improve quality and quantity of malaria commodities at the community Commodities Community
level in both public and private, especially to remote and vulnerable populations for malaria elimination?
What management tools and structures can improve transparency, accountability, and effectiveness of Governance District
health facilities for malaria elimination activities (coverage, equity, and quality) in different contexts and
systems?
What mechanisms and approaches best support accelerated policy and financial responsiveness at the Governance National

national level to ensure timely response to evidence and needs, including in crisis situations?

In the context of a shared public health target of malaria elimination, what are the determinants and the Governance National
effective modes & models of intercountry & cross-border collaboration for policy & implementation?

(Continued)

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002454 November 30, 2017 6/15



@PLOS ’ MEDICINE

Table 1. (Continued)

What adaptive changes are needed in operations (management, financing, human resources, and
responsibilities) of health systems to move to and support malaria elimination?

What are effective models of government leadership at leveraging integrated activities cross-sectorially for
malaria elimination?

What ensures effective governance and accountability to support elimination?
What enables ownership of elimination at national and regional levels?

What are effective mechanisms to leverage financing for malaria prevention from health insurance
schemes?

What are effective mechanisms and approaches to transition from external funding to sustainable financing
sources?

What mechanisms and approaches best support accelerated policy and financial responsiveness at the
global level to ensure timely response to evidence and needs, including in crisis situations?

In the context of a shared public health target of malaria elimination, what are the determinants and the
effective modes and models of intercountry and cross-border collaboration for policy and implementation?

What are the decision-making frameworks required to eliminate and prevent reestablishment?

What adaptive changes are needed in operations (management, financing, human resources, and
responsibilities) of health systems to move to and support malaria elimination?

What are effective models of government leadership at leveraging integrated activities cross-sectorially for
malaria elimination?

What ensures effective governance and accountability to support elimination?
What enables ownership of elimination at national and regional levels?

1st Priority: What are the health planning and funding models and tools required to eliminate and
prevent reestablishment of malaria?

2nd Priority: What tools (existing, new, or a combination of both) can measure systems’ readiness at
community, facility, and district levels in an integrated way to support elimination and prevention of
reintroduction?

Develop the tools and SOPs for effectiveness decay analyses.

Development of tools and strategies to strengthen and sustain active community engagement in intensive
control and malaria elimination.

How can community components of integrated service delivery approaches (IMCI, IMAI, and ICCM) be
adapted to malaria elimination and prevention of reintroduction?

Develop a broad system readiness tool to include stop/start decisions, appropriate economic tool and
approaches (e.g., CEA and CBA), and link the tool to decision-support systems.

What are the health planning and funding models and tools required to eliminate and prevent
reestablishment of malaria?

Cross-cutting National
Governance National
Governance National
Governance National
Financing National
Financing National
Governance Regional/Global
Governance Regional/Global
Governance Regional/Global
Cross-cutting Regional/Global
Governance Regional/Global
Governance Regional/Global
Governance Regional/Global
R&D Health system building | Health system
block level
Cross-cutting National
Cross-cutting All
Cross-cutting All levels
Cross-cutting Community
Governance Community
Service delivery National
Cross-cutting Regional/Global
Cross-cutting Regional/Global

Develop a broad system readiness tool to include stop/start decisions, appropriate economic tool and
approaches (e.g., CEA and CBA), and link the tool to decision-support systems at the regional level.

CBA, cost-benefit analysis; CEA, cost-effectiveness analysis; HIS, health information system; ICCM, intergrated community case management; IMAI,
integrated management of adolescent and adult ilinesses; IMCI, integrated management of childhood illnesses; PHC, primary health care; R&D, research

and development; SOP, standard operating procedure

https://doi.org/10.1371/journal.pmed.1002454.1001

Methods and approaches

In 2009, WHO [3] defined health systems research as ‘the purposeful generation of knowledge
that enables societies to organize themselves to improve health outcomes and services.” It is con-
cerned with how health services are financed, delivered, and organised and how these functions
are linked within an overall health and social system with its associated policies and institutions.
To understand and address the complexity of health systems and implementation of change
into those systems requires not only a systemic but also clearly a transdisciplinary approach.
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Transdisciplinary research entails approaching a complex problem in ‘a way that can (a) grasp
the complexity of problems, (b) take into account the diversity of life-world and scientific per-
ceptions of problems, (c) link abstract and case-specific knowledge, and (d) constitute knowl-
edge and practices that promote what is perceived to be the common good’ [10]. This
approach to research requires the inclusion of various sectors and agencies, community, and
civil society, as well as inclusion and integration of a range of research disciplines including
policy and political science, management, economics, and social sciences (including anthro-
pology, sociology, and development sciences).

Based on this context, the review of the research agenda was pursued in 2 steps, each step
engaging the panel members as described in S1 Text, to organise the health systems research
needs in malaria elimination as a portfolio of evaluation science, research, and R&D. This kind
of portfolio approach should make it easier for researchers and funding agencies to identify
their subjects of interest. The panel used the modified Nominal Group Approach to identify
the priority questions in each category [11] (see S1 Text).

Results: Fundamentals and prerequisites
Changing focus from pilot studies to scale-up

Based on analysis of MESA Track and extensive literature search (S1 Text) and taking into
account the time it takes for the first malERA process to gain traction, it emerged that research
taken up after the first malERA process led to a few interesting pilot studies. Even when con-
clusive, these projects remained fragmented and rarely led to or indicated initiation of scaled-
up implementation of the key findings and recommendations. This malERA Refresh process
aims to avoid fragmentation and move beyond pilot studies.

When research brings forward conclusive results and recommendations, a strong effort
should be placed on scaling them up in that context. When results have not been internally
and externally validated (e.g., because of the small size of pilot studies or fragmentation of
research), then more research and evaluation efforts should focus on gathering the informa-
tion pertinent to inform the scale-up for impact of interventions [8].

Effectiveness decay

Effectiveness of interventions is lost at almost all (if not all) levels of the health system. This
means that at 1 or several points in a health system, efficacious interventions may lose some of
their effect because they cannot be applied or implemented effectively; this is called effective-
ness decay. By analysing effectiveness decay within a specific health and social system one can
elucidate at which levels the greatest loss of effectiveness are occurring (Fig 2) and then test
strategies with which to intervene and recover effectiveness of the intervention. For malaria
control and elimination, understanding the equity effectiveness of interventions, that is
whether all who need to access and use the intervention can do so equally, is of particular
importance.

The effective execution of the elimination agenda would benefit from high performance of
health systems that can deliver the optimal combination of malaria interventions at high and
equitable levels of quality and population coverage. This requires the concerted and combined
strength of all the health system building blocks. Program managers need to be able to detect
the reasons why coverage levels are inadequate or inequitable and, based upon that, develop
appropriate ways to address these reasons within their health and/or social system. And for sys-
tem interventions and strengthening to be effective and efficient, they need to be able to diag-
nose those problems and their determinants and interactions (decay at each level is not the
same in all health systems). The system effectiveness analytic framework has proven very useful
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EFFICACY

Fig 2. Effectiveness decay. Loss of effectiveness of interventions within the health system is depicted here by steps. The pattern of
effectiveness decay (how much is lost and at what step) varies and depends on the specifics of a given health system [12]. The percentages
of decay/loss are hypothetical.

https://doi.org/10.1371/journal.pmed.1002454.9g002

as a health system diagnostic tool to identify areas where and how system factors need to be and
can be strengthened. This framework sees a cascade of progressive loss of intervention efficacy
(Fig 2) and addresses it through system-specific issues of access, targeting, provider compliance,
and client adherence as the system tries to deliver an intervention at effective coverage levels in
real-world settings. Many programmes have used it to analyse the determinants of coverage but
results are often yet to be translated into targeted health systems. Such an analysis will need to
be complemented with an analysis of allocation efficiency, which will help to optimize a portfo-
lio of multiple interventions in a given context to maximize health impact.

Programme efficiency and health system readiness

After the effectiveness decay analysis, programmes at various levels within a country (local,
subnational, and national) can establish the most efficient operational mix to meet their targets
and objectives. They need to precisely define when and where interventions need to start and
stop and what time frame is involved for certain operations. Based on surveillance data and
prevalence and transmission intensity, and assisted by modelling, interventions or mixes of
interventions to be applied in an integrated way should be clearly defined [13]. Starting from
the initial decay analysis at the national and subnational levels, it becomes a health systems sur-
veillance tool to be part of the national programme and the surveillance-response approaches.
By ignoring the continued M&E of the health systems effectiveness, control and elimination
programmes are at risk of inefficiencies and unrecognized loss of effectiveness.

Results: Research and R&D portfolio

Examples of the research portfolio discussed by the consultative panel are presented in Box 3,
starting with cross-cutting priorities relevant to all health systems and policy research topics
and then going over the research agenda in evaluation science, research, and R&D of new tools
categories. For each research question in each category, the health system levels and the build-
ing blocks are mentioned. The top 2 priority questions and the question on which the panel
chose to place special emphasis are always listed first in each category. A rationale is provided
in the portfolio to offer some background and context on the issues raised. Then follows a list
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Box 3. Examples of research questions in the research agenda for
health systems and policy research.

Evaluation science (synthetic, comparative evaluation of existing interventions and
case studies)

« What were the social, regulatory, and political drivers that supported or affected the
ability of malaria elimination systems requirements to be integrated into existing
health system in the country/countries that have eliminated malaria?

What approaches to engaging community health workers in malaria elimination activ-
ities support sustaining their active engagement in service delivery in the country/
countries that have eliminated malaria?

What were the cost-effective strategies for optimal delivery of various components of a
malaria elimination programme to targeted populations/locations developed in the
country/countries that have eliminated malaria?

What role has housing and rural/urban environmental improvements played in sup-
porting malaria elimination and prevention of reintroduction in countries that have
achieved malaria elimination?

Research (test hypotheses)

o That the integration of malaria elimination surveillance and response approaches can
be cost-effectively integrated into other infectious disease surveillance systems.

 That communities can play an effective role in active efforts at transmission reduction
(as opposed to reducing morbidity and mortality from malaria)?

o That routine primary healthcare services including maternal and child health services
can sustain access to and utilization of individual and household-level malaria inter-
ventions to sustain malaria elimination and prevent reintroduction of malaria.

o That improved methods of data collection, synthesis, visualization, and real-time avail-
ability will increase the timeliness and effectiveness of health workers’ responses to
malaria cases in elimination settings.

R&D (develop and test tools, approaches/strategies, and models)

« Development of IMCI and IMAI updated with new diagnostic tools and adapted to
the malaria elimination context.

 Development and scaling-up of tools to measure systems readiness for malaria elimi-
nation and prevention of reintroduction at local and subnational levels.

+ Development of mechanisms to support and maintain financial and political respon-
siveness to malaria elimination and prevention of reintroduction.

« What are the messages and best means of conveying these to various communities/at
risk populations to support access, acceptability, and utilisation of malaria interven-
tions nearing elimination?
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of additional questions linked to the priority questions to suggest key questions also to be
answered.

A synthetic presentation of the full research portfolio is presented in this paper (Fig 3),
color-coded for areas of activities: cross-cutting, governance, human resources, financing,
information, service delivery, and commodities. Questions are ranked according to the health
system level to which they pertain: all levels, community, facility, district, national, and
regional/global. Keywords are used to refer to questions detailed later in the document. Fol-
lowing the synthetic table, the list of research questions is presented for evaluation science,
research, and R&D, starting with priority questions (Table 1).

Capacity building and training

Capacity building and training is a priority cross-cutting all areas emphasized in this docu-
ment. No positive outcome can be anticipated if an appropriately trained and competent work
force cannot be relied upon. This is indeed an absolute prerequisite for well-functioning health
systems and delivery of malaria control and elimination interventions.

Surveillance and M&E

A theme common to all programmes and systems areas is the critical role that surveillance and
M&E play in every phase. Adequate surveillance and M&E methods must be in place to moni-
tor effectiveness and inform the decision-making process. Surveillance and M&E fall under
the ‘surveillance-response’ umbrella, where essential data are collected in space and time to
inform well-tailored, integrated-response actions.

Supply-chain strengthening

A very common cause of loss of malaria programme effectiveness is the disruption in appro-
priate stocks of life-saving commodities for at-risk populations. No malaria control or elimina-
tion programme can hope to achieve its objectives without addressing the issue of stock outs
of commodities and strengthening the supply chain so that an uninterrupted flow of necessary
quality tools can be available at all times for people who most need them.

Community involvement and engagement

A critical element of success and of sustainability of any intervention, and particularly malaria
elimination interventions, is community ownership and engagement. The RBM AIM (2015)
noted as countries move along the path to elimination, resource requirements, processes, and
services change, requiring national systems to adapt and improve, and to deepen their level of
community engagement and in Chapter 6 discussed this in more detail, especially the role of
people-centred and participatory research design and approaches [5].

Keeping a dynamic portfolio: Monitoring progress and
dissemination of results

Multiple factors have slowed progress in the health systems and operations research agenda
since the first malERA initiative, including funding, dependency upon existing national and
provincial health systems to deliver, and limited buy-in by a range of disciplines into the
malaria agenda. All of these factors have contributed to this limited uptake. The panel felt that
in order to keep a dynamic portfolio and not lose traction again, monitoring the uptake of
research priorities established during the malERA Refresh process was essential.
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Fig 3. Overview of health systems and policy research portfolio. HIS, health information system; SOP, standard

operating procedure.

https://doi.org/10.1371/journal.pmed.1002454.9003
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The following processes could ensure proper monitoring of research activities: First,
MESA, through the established tool of MESA Track and linking up with all research and
implementation institutions involved, could be tasked with producing regular updates on
progress accomplished [9]. The second important feedback would be from countries (national
malaria control programmes level) reporting on evaluation science, research, and R&D tools
development. A third approach is to use networks emerging throughout regions such as Asia
Pacific Malaria Elimination Network (APMEN) [14] and the 8 eliminating southern African
countries (Elimination 8 [E8]) [15] to both socialise and support the implementation of this
research agenda, as well as provide platforms for dissemination of lessons learned from the
research. This can use innovative platforms like case studies, focussed study tours, peer-to-
peer mentoring, workshops, and health system fellowships.

Information collected through these 2 tracks would be regularly reviewed by the malERA
Refresh committee and compared across the whole malERA spectrum. The results, regularly
published, in combination with updates from national programmes and their partners on sta-
tus of national research and implementation, would be included each year in the WHO World
Malaria Report. Other channels for dissemination and garnering of scale-up support would be
through platforms such as the political alliances of African Leaders Malaria Alliance and the
Asia Pacific and Leaders Malaria Alliance [16,17]. The malERA Refresh has given and will con-
tinue to give the malaria community an opportunity to highlight perhaps the most important
gaps in getting the world to the malaria-free goal; namely, the continuous and timely improve-
ment in the operational delivery of interventions through health systems improvement.

Discussion

Setting health research priorities does not automatically guarantee uptake and funding, though
there are examples of how it does [18]. And these health systems issues are ‘wicked’ problems
for which no one solution will be found; solutions are not discrete from other systems’ issues,
and solutions cannot be divorced from socio-historical-political environments [19]. This
agenda will also need a broad range of disciplines to engage in the implementation of the
agenda beyond the ‘malaria research community’ to include social and behavioural sciences;
political, management, and organisation science; health economics; and health systems spe-
cialists. Clearly, this health systems agenda to facilitate malaria eradication entails a transdisci-
plinary and multi-stakeholder approach and therefore needs to be more broadly disseminated
and socialised in these scientific communities, and the findings from this research need to be
more broadly disseminated to inform other health system interventions and their implementa-
tion, as well as health system strengthening in general.

As discussed in the section ‘Keeping a dynamic portfolio’, there is a need to rigorously pro-
vide evidence of the outcomes of the research against the overall eradication agenda. This evi-
dence can attract more attention to and focus on the prioritised agenda for other researchers
and funders. The research agenda links to GTS, the strategy, and AIM, the investment frame-
work for action, and creates the essential third pillar on our journey to achieve elimination
and eradication. Building the capacity of health and other staff and researchers in malarious
countries to undertake health systems research, such as through the WHO TDR Structured
Operational Research and Training IniTiative (SORT-IT) approach, is an important step, as
many of these research topics need the ‘localisation’ required to understand the impact of dif-
ferent settings and health and social systems upon interventions and their effective implemen-
tation. Funding for these sorts of localised studies will likely need to be sourced from national
budgets and/or small research grant schemes; be embedded into the M&E budgets of projects,
donors, and governments; and/or be part of the university training and research agendas. The
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larger number of ‘case studies’ can then allow some comparative analyses and synthesis
through evaluation science to be undertaken at a larger scale to better identify enablers, barri-
ers, approaches, and tools for others to ‘trial’.

Conclusion

This remains an ambitious but essential research agenda for malaria eradication. Every tool or
intervention developed, for vectors, parasites, drug administration, surveillance and response,
etc., needs a health and social system operating in a socio-political system to deliver the inter-
vention effectively. To address challenges relating to health systems, transdisciplinary and
multi-stakeholder approaches need to be tested. Results from evaluation science, research and
R&D in this field will likely generate multiple nuanced answers. This process will ensure that
the research questions put forward in a portfolio approach can be tailored to any given setting,
as one size will not fit all, and finally that the maximum efficacy of interventions is maintained
universally across the different social, political, and economic differentials for populations to
achieve malaria elimination and, finally, eradication.

Supporting information

S1 Text. Further details on panel methodology and prioritization process.
(DOCX)
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